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'§1 . INTRODUCTION

Nearly always at some stage in the numerical annlysia and prediction of

‘ meteorological fields, a 2-D (perhaps even 3-D) second order partial differential
equation has to be solved for some particular scalar q_uantity. This note
describes a useful direct method for solving a certain class of equations which,

typically, crop up in semi-inplicit prediction models. In particular this note

came about from the need to find a method for solving the equation

_le(i)-t-/\d) = F’ ' (1)
for small /\. Here i?: is the horizontal Laplacian.*)o is a constant and F= F(X_,\j\.
is a field defined over a rectangular domain. For small values of /\ in (1)
iterative methods fail because of the difficulty of obtaining a ‘reasonable' first
guess solution.

Direct methods are often dismissed on the grounds that they demaand too much
arithmetic. Thie note shows that, far from being time consuming, direct methods
can be made very competitive with iterative methods of solution.

§2 is devoted to the notation and nomenclature used throughout this note.
The Lyapunov equaticn is discussed in §3 together with the necessary and sufficient
conditions for a unicue solution and also direct methods of solution available.
In §‘+ some applicetioris to special cases are given with particular emphasis on
Neumann and Diriclilet boundary conditions. §S deals with the use of fast Fourier
transform (FFT) me*hods in computing the decoupling/coupling part of the solution
given in §l§. In §6 a comparison is made between the method developed here and

the efficient alternating direction implicit (ADI) iterative method.

§ 2. NOTATION AND NOMENCIATURE

Since this note depends to a large extent on the manipulation and use of
matrices, a short description of the notation and conventions used is given here.
A matrix B is denoted byé and a particular element of:'B4 by B 3 where the j suffix
refers to rows and the i suffix to columns.h',‘-(Q) denotes the i th column of @ .

If the matrix has n rows and m columns it will be called & matrix of order n X m.

The matrix.A_ is used to denote a square matrix whose elements are zero apart from
-~

-~



those along the main diagonal. I is the unity matrix defined by

I%-5I-8 1 »

e
~ -  d

for any % .
=
In §5 Fourier transform methods are discussed. This is a one-to-cne mapping
of any sequence An of complex numbers, n=o, 1,...n:«1 ouic ancther sequence Xj

j=o, 1 g e ..m—1, defined by

M-t Y
. ] \ gy
X AW
\z0o ..
where \\/:j is understood to mean ( i and

Wi = Ex?[zm‘,/mj , e=/,

is the principal M th root of unity. The above trarsformation is written

for brevity as
X je—A,

_§ 3, GENERAL THEORY: THE LYAPUNOV EQUATION

The Lyapunov equation is best known in its form

Y§ §)( } (2)

vhere the g and é matrices are of order n x m, X is of order m x m and \(
of order n x n. Equatlon (2) plays a fundamental role in the equilibrium or
stability theory of differential systems (Bellmar 1969), a topic started independentily
by Poincare and Lyapunov. It can be shown (Belluan 1970) that the necessary and
sufficient condition for (2) to have a unique solution in § for all g is that

Af) +/¢(‘.#o , where )‘J are the eigenvalues ofI nd /«d are the
eigenvalues of X .

The Lyapunov equation, in connection with the solution of differential systems,

has been the subject of ‘some study in the literature (eg Bickley and McNamee 1960,
Osborne 1965). Bickley and McNamee give three methods for solving equation (2),

which they term the semi-rational, irrational and raticnal methods, to be described

below.



SEMI-RATIONAL M&THOD

This appcars the most useful of the three and is the one which iz developed
further in this note. The method requires a knowledge of the similarity transform

of either X or Y « If that of X is known then it is possible to write

= E'/.\:xgz-‘ )

are the eigenvalues of X o Upon substitution

-
-

-~

-
where the non-zero elements of _/\_x

o~

for X in (2) and defining

Y6 +C A, =

- ~ -‘
N 0 ~3

Equation (3) can now eamly be br ken down into sets of simultaneous linear

zzJ*s

a Ol

- C‘E 1
then -
4 (3}

20

. equations of the form
(Y + 1 D) ), wriame

Each column of C can be solved from (4) and the solution compieted by a
=~
matrix multiplication. In the case of matrices of large order the matrix

multiplications in calculating % and § can be a lavge; if not the dominating
part of the computation. This will be ret\i'ned to in §5. Equation (&) only
epplies when the eigenvalues of 2‘( are all distinct and that is the only case
considered here (but see Csbourne (1965) when this is not so). .

JRRATIONAL METEOD

The irrational method involves a knowledge of the gimilarity transforms
of Y and X o For Y it is assumed that
™) < =

oM el

vhere "-AJ‘Y is diagonal with elements ,\ « Then

A+ TIR(SE) = K, (s"c)' | (5)

Since ./L is diagonal the solution of (5) is trivial. Then the solution to (2) may
be found by two matrix multiplications. Since the elements of -A..y are the /\] ‘s,

(5) also demonstrates the uniqueness condition given earlier, since

Qi )§E)5= (§ sy

for each i and j. Providing /\ 1 - /“Lt’ ,,l_- (@) a solution for § can always
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be found. BHence at least one of the two matrices Zg and t( must be non~singular.

RATIONAL METHOD

The rational method of solution reguires a knowledge of the characteristic

-~

equation of either )3 or Y . The charascieristic equation V) of a matrix é\ is
L~ —~

defined by evaluating tte Jdeierminant \I}_\-’/\};\ s Ao
A=~\

f - [N
$LA) = 1p-ATh= 2, O A +A
PR~
and is a polynomial of degree n in }\ if &\ ig of order n x n. The Cayley-Hamilton

theorem (see for example Bellman 1970) states that the matrix B satisfies its own

-~

characteristic equatirni ie

vy = Q.

r <
is understood to mean the result of the r-1 matrix mltiplications

A

A AL A (e terms). In particular if that of \f is known then ‘i’(\‘:) B 9
=22 < = <

P
-~

or

hed| v
L oA +h=Q

=0 ~

vhere 9 is the n x ©» null matrix (all elements zero). Clearly since "-PQ_\(J =9 %

v()e -9 -

From equation (2) 3t is fairly straight forward to establish the identity

8- Fe LY TLY

then

and hence the equation

Q-#DE - THN-ROLGK. ©

Equation (6) is a set of linear equations in the rows of 6 « The matrix %
-

-~

represents those terms independent of i o
-
In application the first method (se;i-rational) is to be preferred providing
the resulting sets of linear equations can be handled efficiently. This is the
method we develop fﬁrther in §4 when some important special cases of equation
(2) are discussed. The other two methods of solution proposed by Bickley and

McHamee do not appear to offer any advantages over the first method, especially

when considering maetrix equations of large order.




!iuu APPLICATIONS TO SPECTAL CASES

In general, of cource, the application of the semi-rational method to
large systems would involve a considerable amount of computation in both
the matrix multiplications and the solution of the sets of simultaneous equations.

The matrix multiplications needed to compute

20l

and % each involve ﬂx(-‘\,‘

multiplications and nm(m=1) additions. To sclve tho ‘:x gots of equations (B)

directly by, say, Gaussian elimination with complote pivoting involves approximately
x 00 [3 multiplications and about the sam: numbar of additions. So that on

a rectangular mesh n x m, the number of operations (vboth additions and

multiplications) per grid point is roughly Lm t 1“:-"'."3 . Indeed in the

general case the irrationsl method would be more ravourable sincé this involves

four matrix operations resulting in about lm + ln gvltiplications and additions

per grid point. However, for large systems, problems may be encountered in

computing the similarity transforms and their inverses.

The above computation estimates for the general case indicate that direct
methods must be applied cautiously and to speciel systems whore it is possible
to d_rasti‘cally reduce the number of floating point operations. In this respect
attention is now turned to the equation presented in the introduction to this

note, namely the Helmholtz equation

LS .
-VH<I>+X¢=§‘ . @)
Tt is assumed that F is a 2-D field defined over a uniform retangular mesh

of pointe (n x m). The standard finite difference form of (7) can be written as

“Bins~ B3 "fa,,j«. 5 ‘f’i,j-. +(A+w) 4, sov o iy

(8) may be rewritten formally as

[X] ‘1’1,3 +[.Y]S{>i,5+ /\‘#i5= ¥ i 9

vhere LX] and LY] are formal operators such that

: [Y] ¢1,3 5 (#i)jﬁ' o (ﬁi,j-l +2 ¢Lj
[X] ¢1,3' ‘¢iﬂ,5'¢’i‘bﬂ % 2¢'L:)

and



1f (9) is transformed into matrix notation with
= i F“l ? 2
- [} g

e
then the LX} operator must be a tri-diagonal matrix ( 2.<. ) which multiplies 9

—~
e

=1
]

and

o

on the right. Similarly the LYI operator is tri-diagonal ( Y ) and

multiplies § on the left. (9) can then be written as

X&*—TZE*%)S:E, (10)

-~
~
-~

-

f § is n x m, then l( will be m x m and Y n x n. Thus Helmholtz equatiore
< k¥ - /

of the form (7) can be reformulated in terms of a Lyapunov eguation (10). The

-
-~

. non~zero elements of ?S or Y are -1, 2, -1 except for the first and last rows

vhich must be modified to include boundary conditions.

1)  NEUMANN BOUNDARY CONDITIONS

In this case the value of 5‘{' around the boundary is known. The mexcrix

operators X or Y now take the form
-~ ~e
et o~

Y~ R o
- OB SRR W o S e O
: : (1
o et sl
Lo . A o -‘ l-

Empioying the semi-rational method of solution to equation (10) requires

computing the &imilarity transform for 2‘( PSS G )S has the form (11) it is fairly

easy to show that the eigenvalues are

2 ‘-v b
M o= B oSw "ZRW) 1242,...M

and the normalised (to one) eigenvectors

xj =ﬁ—{¢°8[‘§'”‘}“"”‘]} i

where the elements of _x_."' are given by i=1, 2, ...m, and the different eigenvectors

are J=1' 2' ecsllle



. then

By forming the matrix E whose columns are the eigenvectors of Z(‘ 4
z -J

E;JL E‘ > -’%x’D‘;'iC’(/‘Q-

N
Furthermore since the eigenvalues of X, are distinct, it cen be shown
that the eigenvectors form an orthogonal set of dimension m, so that

T
< E (transposge) .

-
-y

Substituting for X in (10) ylelds

-~
- _el
Ad + Y8 « ’;Q A& = F (12)
= = = == A"= =
or #
‘_(é) - Kt(‘;)) i=l,...m) {13)
where

= @E .and

Since Y is tri—dwgo:.al and ,\)0, /“(‘L 2 5 (Y 4.()\.(.}4-)1) is disgoral.ly

domL.ant and the standard tri-diagonal algorithm given by Varga (1962, p.195) uay

(\g +(A *«}MD K
G

n-n\
1]

L3

2

be used (see also Ricdfmyer and Morton 1967). This requires approximately four
additions, two multiplications and one division per point and is independent of the
number of points. The method, which is a special adaption of Gaussian elimization
with pivoting about each column, is often referred to inthe literature as the
double sweep method. A sweep is made through the data in the order of increasing
j determining two sets of coefficients inductively for j=1, 2, e..n=1. The boundary
condition for j=1 is included in this calculation and that for j=n essentially
gives the solution for that point. To develop the rest of the esolution merely
requires a sweep through the data in order of decreasing j. The method is very
efficient and keeps all the coefficients nicely in scale.

Using the double-sweep method in the semi-rational solution means that the
matrix multiplications are the only major part of the computation. Before going
on to discusa possible ways of reducing this pert of the calculation, one furtier

special case will be discussed.




ii)  DIRTICRLET BOUNDARY CONDITIONS

In this case the valuve of }‘ is given around the boundary. The matrices X

R

or Y now take the form

b pz v\ O i . . 0‘1
“<1 2= 0 .- 0
(14)

O - . . —‘ 1. —\
, Lo -

The matrix A cznorow ve shown to possess the eigenvalues

E N .
U = 'l— A + =34 W

end the normalised eipenvectors

) IR 1. 1= :
X3 = /‘: zSN(‘M\) PR AT e

Unlike the Neymann case there is no zero eigenvalue. Again equation (13) holds with
\f given by (i4) and )\ > o, My >O s0 that the matrix C\g + ()\ */L(JT_)
- b =

is still diagonally dominant and the tri-diagonal algerithm can be applied. The

-
matrix \;:.:_ (formed from the eigenvectors of Z(’ ) in this case is also its own
- -~

inverse.

In conclusion i* iz to be noted that (7) is not the most general system that

can be reduced to solving tri=diagonal equations. The most general elliptic equation

capable of solution by this method is

—VH“(#*'/OC‘O)?S */3(332"5 Ll (15)

vhere ﬁ end /0 are functions of y but not of x. The methods already described

can be easily adapted to deal with (15).
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aS} DECOUPLING ,/ COUPLING PROCEDURE: USE OF FAST FOURIER TRANSFORM METHODS

§lf described how to reduce the Helmlpltz equation (7) to solving sets of
tri-diagonal equations, and described an efficient method for doing so. However,
in decoupling (7) into the normal modes of the Z§ operator and then re=coupling

-~

requires two matrix multiplications namely:

Tl
i

@ J

18]

and

-\

3

Each matrix operation requires m multiplications and m-1 additions per point.

"
HOES
um

11}
U

!

g

i

P4

The elements of the matrix g are either sines or cosines depending on the
-~

boundary conditions employed. In the case of Dirichlet conditions the matrix

multiplications reduce to

L

=. _[= ->- e Fir R

13 - &:T Y_;3 'Snséﬁcﬁs-‘) J‘,I -‘) b SO
T\

T

and

M
s v - 2 . m A ‘— (15)
§7.3 /‘:‘E C‘_JSN(M“) yt*Ld . m
‘—3\ : :

vwhich are the Fourier sine transforms of F;, t. and C"‘)' dence the matrix

multiplications represent simply the Fourier Hecomposition by rowsof the data. The

fast Fourier transform(FFT) method is a computational algorithm (Cooley et al 1967) which
like

greatly increases the speed at which transforma/(16) can be computed « typically by one

order of magrnitude. e e Lo =

The discrebe complex Fourier trunsform isfbne-to-qone mapping between the
complex sequences A“ s N=0gls ceves m=1 and X) ’ j=0,1. ecese M=1 88 definad in

§2 ie

X,("‘""‘"—-P‘A“

9




Real sine or cosine transformations, like (16), can be manipulated into complcx‘
trensforms on half the number of points as described by Cooley (1970). Thus in all
calculations it is assumed that m is even.

In the case of Nevmann bouudary conditions the matrix multiplications

reduce to

(Z'LK“'-\)(C'")K
ﬁ‘éZE:x Ymrll CXDS{: .1 ?

rd (17&|b)

ot (zc-q)(r .)r] .y
‘;3 - “\2.\ r:) C,OS[- 3,13\)2)...(‘\

Tz

which unfortunatel;; do not appear to be related directly to anyFourier transform.

Since Neumann conditions are by their nature more complicated than the Dirichlet type,
it is to be expected that trunsform methods will be more difficult to apply.

There are two distincdt transforms to consider in the Neumann case (17a,b);
equation (17a) refervin; to the decoupling inte acrmal modes, equation (17b) referring
to the coupling inteo the final solution. The purpose here it to show how a subroutins

or special hardware unil capable of computing the discrete Fourier series.
M
Xj ) A(\\,JM a0, o Mo 1)

A-
can, with some suitavle pre~and post-processing of the data compute the special
transforms (17a,b). The reader is referred to Cooley (1970) for detailed information
concerning the computation of real Fourier series.
Before proceeding further, some definitions and remarks are made. Firstly,
to be consistent with notation often found in the literature, all summations

start at zero, so that the transform pair (17a,b) are written as

M-l
F‘iﬂdu X j%? 2‘ F"\\,J.f\ C—OS[—-——-](QV:‘?\‘"K
vo

10



M-

2040 | o
’§1;?‘.,j+l e Z crﬂ ,30 COS[L——) =1 5 Bt

An important preperty of the Fourier transform (18) is that the indices J

(19a,b)

end n are to be interpre’=d modulo i. Therefore, X,_3 with O $ 3 s M-\ is

understood to mean XM-"' « Further, a sequence is defined to be even if

Xj - xf'\—') ) F
and odd if

Xj =Ky

Many special properties cof XJ translate into special properties of A‘\ e« For
exainple % X., is eal and odd, A{\ is imaginery and odd. A list of various
properties is given in Conoley (1970).

NEUMANN DECOUPLING PROCEDURE

The purpose here is to develop a procedure for calculating (19a). To make
the transform recognicable, the 2m4\ data values A‘. : - 0)\, B [ Y are defined

as

'g O,Fi‘j)o)\"ﬁ‘)o ke 4 rm,g) &)

wvhere Al’ (r even) is zero. Then consider the transform

AM :
Y.g = Z, A C.os[‘:-?-I 1=0,1 ..2m, (20)
Mo 2 =7 ?

(20) represents a cosine transform on Pm+1 points, the first M-values of the Y A

being the waa,, A  required in (19a). Because of the nature of the Ar &

the problem c¢f computing (19a) has been neatly emtedded in that of (20) - and (20) is

11



a transform which is familiar. 'I"hat really solves the problem, s8ince one could go
ahead and compute all the \(LIA using for example procedure 6 described in

Cooley (1970) for a cosine transform. However (20) involves computing (2m+?) values
when only m are in fact required. A suitable modification of Cooley's proce-ure

6 neatly eliminates half the calculation as belows.

Eguation (20) may be written in .termgeg »n even s2gueace C‘. as

“5-'\' 5 2
Y‘L = ZJ C’l" wf“t“- , (21)
F=o

; : /
vhere for odd r, Ar—.lcf. while tor even r, A‘- = (\_‘. « &. Since C,(- is an even

sequence, Cl" ':'C"H'l . The reader will easily veritfy that (21) reduces to (20) in
this case. Now the manipulations set out by Cooley (°970) require forming the 2m

complex numbers
Xr’ > C'lr L "(Cli”-r" Cn—.b, =9, ... sk

‘and then computing the transforu

o re
:2“1.‘ "'2 . Xr\\(sm s Tm0t U ANt e
"o

Suitable formulae set out in Cooley (1970) give the \: in terms of khe Z.‘: .
However Ar for even r, is zero, which implies that Cu,is zero also.

Tnerefore

Kp = ¢ (Cl\'ﬂ = C-xr-\ 5 TR Op 1, s i
and can easily be shown to be a pure imaginery and odd sequence. This implies that

'
the 7 Aare real and odd, ie &« z —Zam-1v - Using this fact it is easy

to show that (22) becomes simply a sine transform A m -1 points, namely

12



e

M-\

Z . e S\N’(ﬂ‘g—>

=\

IR
‘0
i\

whe. e
op= 26Xy, (¢ ).

Hence once the z’b are computed from (23) the appropriate formulae may be used to
obtain the \f‘L in (21) or (20). Thus the amount of work required is one sine
transform on m=1 points plus the manipulations required for a cosine “transform.

NEUHANN COUPLING PROCEDURE

To calculate (19b) (the coupling stage) a different approach is needed. Consider

the transform

M-
. 2L+\)Y‘K 5 :

Y 'Z. A COS[( }) C=0,1, ... (24)

=0
and expand as

A -

‘Y"-‘- > A (COS 1"--KCOS"‘K - SNITK . 'R)

12 ‘é r = S 2=l

This is identifiable with the sine-cosine series on 2m real points

M- - :
. ; z
\{i ¥ J.;_- QQ*Z chos':_‘:&.‘.z (Tr&bfl‘:-x-ti“)am (25)
- M m v
B T

if
O = A\- COS-E—E sy Eela . ey
Qm: O ) &° - ZAQ,

and

Clearly the first m~-values of Yb in (25) are those required by (24). Again the
transform problem has been embedded in a larger one of known type. It can easily

!
be shown that the C.‘,A in

3




20-1

Ym - Z-x s \'*[:..,) =0, .. (@)
Ll X >

can be identified with the coefficients in (25) as follows:

Qr = Z,KK(C(-)) ogTrgEm,

oy, # =2 JCa) R 2

/
The Crémust of course oe conjugate even, ‘ie C‘-: sz.ro

e
The procedure for computing the sine-cosine transform (25) or (26) is set

out by Cooley (1970). Using suitable formulae, the sequence CT, F=0,1,...2M

is cast into another\complex sequence Af‘, \‘:0) \) M-l and the tranzfora
&' ri
’ E - (27)
M=o

computed. The result is a complex sequence .Z'.?_ whose real snd imaginery parts are

related to the YL defined in (25) by

Y(_Z‘i)‘-' RCZJ -
Y(2:i4) = ’}(z":c) 180,01 M

/
Hence the Yz‘(’ required in (24) are the first % (m even) complex values given
by (27). Thus the coupling stage for the Neumann problem requires one half of a
sine-cosine transform on 2m points.

§6. COMPARISON WITH ITERATIVE METHODS

In this secticn a comparisén is made between the Fourier plus Double Sweep
method discussed earlier and the efficient alterating direction implicit (ADI)

iterative method of Peaceman and Rachford (1955). Since ADI is deemed one of the

most efficient of ’"iterative schemes, comparisons with other methods are not considered.

Since the methods can be compared in a variety of ways depending on the number

and type of floating peint operations, the aim here is to convert the operation

i
T VI P U AL
SR SRCT G W

4



. count per grid point into machine cycles required on an IBM 360/195 computer. For

ADI an efficient scheme reguires 6p multiplications and 10p additions per point,

where p is the ﬁumber of sweeps through the cata. Counting two cycles per addition

and three for a multiplication results in some 38p cycles per grid point for ADI.
Temperton (1975 gives the approximate number of floating point operations

for Fourier tranaf{~rms s= -

|-S‘; + 2. 670'.-& 2.5t +4S +Z "i (5+M{)té"l+ K')
¢

@dditions. and /
P+ 29 +15r+32S *Z 1,-_(2+m>tg-2ﬂ<,)
c

maltiplications, where

v by \ tz,
m= 203" 45 M e

and K1, K. depend on the type of transform being performed. Of course Fourier

2
methods are most efficient when m factors into small prime numbers « the efficiency
depending greatly on the size of the largest factoer.

To give an indicalion of the efficiencies that can be achieved a comparison

is made on a grid having m=60 points in the x-direction.

DIRICHLET CONDITIONS

This is the easicst to consider and requires roughly 14 additions (K,=5) and 8
multiplications (Kfa.s) per grid point; ie about 42 cycles. The ' Gaussian step
requires 25 cycles (including the division). Thus the total number of cycles
requiréd by the direct method would be 2x52 + 25 = 129 cycles, which is roughly
equivalent to three~and-a~half ADI sweeps.

NEUMANN CONDITIONS

This is a little more tricky to compute, but as a guide it may be considered
as one sine transform on m=1 points plus the manipulations for a cosine transform
(decoupling stage) plus half of a sine=cosine transform on Zm real points (coupling

stage). In this case in total there are roughly 38 multiplications, 22 additions and

15




1 division requiring about 150 cycles. Four ADI sweeps require 152 cycles. Bec‘e
of the extra and varied manipulations required in the Neumann case, the true
value may be higher than this.

In the above comparisons no account has ba2er itaker of the amount of time
spent in actually indexing the arrays. This is an imporiart secondary factor and
should always be borne in mind when comparing mzthode under test condition;.
Thus a scheme which halves the number of floating point operations may not halve the
execution time if a different array indexing scheme hns fo Te employed. Nevertheless,
in general, any method which reduces substantislly ti< floating poin: arithmgtic
is to be preferred since round-off error is also rodcced,

The approach described in this note demonztrates that for the Helmholtz

equation (1) a direct method of solution can compar: very favourably with iterative

methods.

6
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Kddition to Met.0.11 Technical Note, No.,71 by M.C.Tapp

ADDITTONAL NOTE ON THE NEUMANN COUPLING PROCEDURE,

When applying the methods described in this Technicel Note to solving
the Helrholtz Equetions occurring in the mesoscele model,an improved method
for handling the Neumann coupling procedure was founde Instead of trans-
forming directly the M=vectcr represented by Ae (!"-‘-‘ = 5 R 17\-\),
consider the problem of computing the sine trensform of A’r s namely
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From Equation (24) it is emsy to show, using tﬁgonomtric relations, thet
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To complete the calculetion ~.f the \{L 'A s one of them must be computed directly
using equation (24), aay\(o 3 \f'_ ((_=|) m-\) may then be calculated from
equation (25a), Hence the problem of computing the transform (21} may be
reduced to that of & sine transform on M=\ pointse Cooley (1970) gives the
steps required to compute a basio sine transform,.
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