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Abstract

In numerical weather prediction, datasets of opportunity is a collective term used for meteorologi-

cal observations obtained from unconventional data sources. This report presents the quality-control

process designed for a vehicle-based dataset of opportunity containing 67959 observations obtained

from a proof-of-concept trial run from 20th February until 30th April 2018 by the Met Office. In this trial,

on-board diagnostic (OBD) dongles were used to transmit low precision dry bulb temperature measure-

ments from a vehicle to the driver’s phone which were subsequently uploaded to the Met Office cloud

servers with time, location, and vehicle identification metadata using a Met Office phone app. The

raw data from the trial was first filtered to remove observations with missing fields or invalid measure-

ments and metadata. The resultant filtered dataset contained 32179 observations (47.4% of original

dataset) which underwent further testing. The quality-control tests applied to the filtered dataset in-

cluded a climatological range test, a stuck instrument test, and a GPS test that checks whether an

observation location is physically consistent with the vehicle’s previous location. A substantial number

of observations were flagged by the GPS test due to the accuracy of smartphone GPS measurements,

GPS location update app settings, and poor GPS signal, while the majority of observations passed the

climatological range and stuck instrument test. The 19094 observations which passed all previous

quality-control tests were put through a final sensor ventilation test to determine if the vehicle drove at

a sufficient speed for the temperature sensor to be adequately ventilated. This test flagged 1669 obser-

vations with speeds below a predetermined sensor ventilation threshold. In total, the quality-controlled

dataset consists of 17425 observations (25.6% of original dataset). The results of the quality-control

process have shown that the observation location metadata can be inaccurate due to unsuitable app

settings and poor GPS signal. Additionally, inadequate sensor ventilation can result in observations

with a warm bias. Recommendations on future data collection include revising OBD dongle and app

settings/features to correct observation GPS, methods to circumvent the need for vehicle identification

in quality-control, and the use of higher precision instruments.

1 Introduction

The advancement of convection-allowing data assimilation requires a large number of observations of

high spatio-temporal resolution relevant to the weather processes being modelled [Sun et al., 2014,

Gustafsson et al., 2018, Dance et al., 2019]. Due to the enormous cost of installation, management,

and maintenance, it may not be practical to extend traditional scientific observing networks. A potential

alternative source of inexpensive, high-resolution meteorological observations to constrain convective-

scale numerical weather prediction forecasts is from crowdsourced data which are currently receiving

increased interest from the numerical weather prediction community (e.g. Nipen et al. [2019]).

In the context of numerical weather prediction, crowdsourced data collectively refers to reports and

data generated by the public through use of privately owned equipment [Hintz et al., 2019a]. These

observations will be inaccurate in comparison to those obtained from scientific observing networks but

have the potential to far exceed the number of scientific observations currently produced. Application of
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crowdsourced data is relatively new and studies into collection methods and observation characteristics

are currently active areas of research (e.g., Bell et al. [2015], McNicholas and Mass [2018b], Hintz et al.

[2019a], Nipen et al. [2019]).

Crowdsourced observations from citizen observing networks have been shown to successfully observe

meteorological phenomena such as urban heat islands directly through digital and car thermometer ob-

servations [Knight et al., 2010] and amateur/citizen science weather stations observations [Steeneveld

et al., 2011, Wolters and Brandsma, 2012, Chapman et al., 2017, Meier et al., 2017]. Additionally, ur-

ban heat islands have been shown to be observable through temperature measurements derived from

smartphone battery temperatures [Overeem et al., 2013, Droste et al., 2017]. To ensure representative

measurements from direct observations, several precautionary measures must be taken into consider-

ation [Bell et al., 2015]. For instance, citizen weather stations need to be shielded from radiation and

temperature sensors need to be located a sufficient distance from buildings and in a naturally ventilated

area. Sensor ventilation is especially important to prevent large air temperature errors in circumstances

of large radiative forcing (e.g. World Meteorological Organization [2008], Richardson et al. [1999],

Nakamura and Mahrt [2005]). Though guidance on the proper use of meteorological instruments was

provided in these studies, the overall credibility of the crowdsourced datasets must be evaluated through

quality-control methods before the observed meteorological processes can be examined.

Quality-control is a vital process performed prior to data assimilation to reject observations that are likely

to contain gross errors. The techniques which comprise the quality-control procedure usually include

simple checks designed to test different aspects of the observed values [Zahumenskỳ, 2004, Fiebrich

et al., 2010]. Quality-control of crowdsourced observations is a notably difficult task [Muller et al., 2015].

Non-traditional data sources may suffer from numerous issues that traditional scientific observations

will not (e.g. calibration, user behaviour such as locations above/below ground, low precision data,

sensor-specific measurement errors, etc). As an example, surface pressure observations from smart-

phones may not be the desired meteorological measurement due to user behaviour and inadequate

location and elevation metadata. We note that while smartphone GPS accuracy may be degraded by

urban environments, recent studies on horizontal position accuracy in urban areas have shown they can

produce acceptable location-based metadata for crowdsourced observations (e.g. Merry and Bettinger

[2019]). Due to the previously mentioned issues over half the smartphone observations examined in

the work of Madaus and Mass [2017] and Hintz et al. [2019b] were removed through quality-control.

However, smartphone observations have been shown to improve forecasts after bias correction and

thorough quality-control had been applied to the data [McNicholas and Mass, 2018a,b, Hintz et al.,

2019b].

Adverse weather is a leading contributor to severe congestion, large travel time delays and harmful

incidents for surface transportation networks [Snelder and Calvert, 2016]. To combat this, vehicle-

based meteorological observations have been utilised by the Clarus Initiative [Limber et al., 2010] and

the Pikalert System [Boyce et al., 2017, Siems-Anderson et al., 2019] to provide improved road and
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atmospheric hazard products to road maintenance operators and the travelling public. Examples of

observations obtainable by vehicles include precipitation (e.g. Haberlandt and Sester [2010], Rabiei

et al. [2013]), air quality (e.g. Devarakonda et al. [2013], Rada et al. [2016]), atmospheric pressure and

temperature (e.g. Drobot et al. [2010], Chapman et al. [2010], Anderson et al. [2012]). Studies on the

quality-control of vehicle-based temperature and pressure observations have been for idealised experi-

ments where a set number of vehicles were driven along predetermined routes using fitted meteorolog-

ical sensors with known error characteristics in order to generate weather statistics for road segments

[Chapman et al., 2010, Drobot et al., 2010, Anderson et al., 2012]. This freedom over the experimental

design allowed for Anderson et al. [2012] to use spatial consistency checks between neighbouring vehi-

cles and nearby surface-stations as well as sensor range tests to check the meteorological instruments.

Chapman et al. [2010] also used a nearby surface-station consistency check and a sensor range test

but used a climatological range test instead of a spatial consistency test between neighbouring vehi-

cles. In contrast, the small novel dataset examined in this report allowed for no such freedom in the

experimental design and severely limits the quality-control tests applicable.

The objective of this report is to quality-control a vehicle-based observation dataset and to provide

recommendations on future data collection methods. The structure of this report is as follows. In

section 2 we provide an overview of the Met Office proof-of-concept vehicle-based observations trial.

Preparation of the data obtained from the trial into a filtered dataset to be quality-controlled is discussed

in section 3. The detailed description of the implementation and results of the quality-control tests is

given in section 4. The results of the quality-control process highlight that the observation location

metadata can be inaccurate due to poor GPS signal and app settings. Additionally, inadequate sensor

ventilation can result in observations with a warm bias. Discussion of the quality-controlled dataset is

given in section 5. A summary with recommendations is provided in section 6.

2 Met Office trial

The vehicle-based observations studied in this report are obtained from a trial by the Met Office from

20th February 2018 to 30th April 2018. In the trial, volunteer participants connected an on-board di-

agnostics (OBD) dongle to their vehicle engine management interface. The OBD dongle used in this

trial is an inexpensive adapter which is inserted into the OBD port of a vehicle which transfers vehicle

diagnostic data to a Bluetooth-connected computing device. Meteorological parameters and vehicle

speed (given in km/h) selected on the app “Met Office OBD App 0909” are broadcast to the participant’s

Android phone. This app decodes any data sent by the dongle and appends the corresponding date-

time (given by the app as the date and 24 hour clock time) and GPS location metadata derived through

the phone. In addition, a unique observation ID and sensor ID are appended to each observation. A

sensor ID is used to determine if observations come from the same vehicle. However, the sensor ID is

specific to the installed version of the app and so reinstalling the app used to record the observations
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would result in a new identifier for the participant. The observations along with relevant metadata are

then uploaded via 3G or 4G to the Met Office Weather Observations Website [Met Office, 2011]. The

preset data collection frequency and GPS update period are set to 1 minute while the preset minimum

distance for a GPS update is 500 metres. These settings can be changed by the participant through the

app interface.

In total, 31 participants were successful in producing vehicle-based observations from journeys they

undertook during the trial period. For clarity, we define a journey as a subset of data originating from

the same vehicle over a fixed time interval. Throughout this trial, fewer observations were usually

obtained during weekends than week-days. A “call for data” was made to obtain data for certain weather

conditions on the 9th March (rainy), 22nd March (benign) and 16th April (sunny). In addition, a large

number of observations were obtained on 27th March due to a few long journeys.

The observations of interest obtained through this trial include dry bulb temperature (◦C), engine intake

temperature (◦C) and air pressure (hPa). Both temperature observations have low precision (1◦C). The

air pressure is precise to 10hPa and hence not useful in data assimilation. In this report we examine

dry bulb temperature only. Engine intake temperature measures the dry bulb temperature in the vehicle

engine which will not reflect the true atmospheric air temperature. However, a fault known to have

occurred for some observations during this trial is for engine intake temperature to be recorded as dry

bulb temperature.

3 The filtered dataset

In order to assess the quality of a dataset, each datum must contain information we are interested in

examining. Any data which are obviously in error or do not have the relevant observation field we wish

to examine will be discarded. The remaining data will be referred to as the filtered dataset and will

undergo the quality-control process detailed in section 4.

3.1 Preparation of the filtered dataset

To obtain the filtered dataset we carry out some gross checks on the dry bulb temperature measure-

ments and accompanying time and speed metadata of the complete dataset. In particular, we discard

any datum which exhibit any of the following properties:

1. the vehicle speed is less than 0km/h,

2. there is an invalid date-time in the observation metadata,

3. there is no dry bulb temperature observation.

Data that do not exhibit any of these properties will form the filtered dataset.
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In total, 35780 observations were discarded resulting in the filtered dataset containing 32197 observa-

tions. No observations were discarded due to an invalid date-time. Many of the discarded observations

contain speeds with value −32768km/h which is the value used when the vehicle speed is unable to be

recorded by the app. This is the minimum short signed integer for a 2-bit system. A single observa-

tion with speed 255km/h, over double the speed limit for dual carriageways and motorways in the UK

[UK Government, 2015], is discarded as it is likely incorrect. There were 34681 discarded observations

without a dry bulb temperature field.

The data that passed this data filtering test underwent further quality-control tests. We now examine

the observations in the filtered dataset before we describe the implementation of the GPS and sensor

ventilation tests detailed in sections 4.3 and 4.4 respectively.

3.2 Characteristics of the filtered dataset

To implement the quality-control process described in section 4 it is necessary to have knowledge of the

characteristics of the filtered dataset. In this section we examine the dry bulb temperature observations

(section 3.2.1), the temporal frequency of the observations (section 3.2.2) and the GPS measurements

(section 3.2.3) of the filtered dataset.

3.2.1 Dry bulb temperature

The number of dry bulb observations for each month as well as their distribution is shown in figure 1. In

total, 5684 observations were taken in February, 16211 in March, and 10284 in April. We note that, except

the two outliers in April that had a dry bulb temperature of−22◦C, there are no observations with dry bulb

temperature less than −8◦C. Any observations with a temperature greater than 20◦C occurred in April.

Furthermore, the largest dry bulb temperature values (27-34◦C) occurred for vehicle speeds less than

25km/h. As discussed in section 1, this is likely to be caused by inadequate sensor ventilation.

February March April All data

Number of observations 5684 16211 10282 32175
Mean 3.33◦C 6.59◦C 11.38◦C 7.55◦C

Standard deviation 3.99◦C 3.48◦C 4.34◦C 4.84◦C
Skew −0.09 −0.44 0.67 0.27

Excess kurtosis −0.74 0.27 1.13 1.14

Table 1: Summary of the descriptive statistics for the filtered dataset and split into each month. The two
values of −22◦C have been removed from the descriptive statistics calculations of “April” and “All data”
as they are clearly outliers.

A summary of the descriptive statistics for the filtered dataset and each month is given in table 1.

As expected, the distribution of dry bulb temperatures varies significantly with each month with mean

temperatures increasing from February to April due to season. The distribution for February is the most
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concentrated distribution (negative excess kurtosis) with slight asymmetry (negative skew). March is

a less concentrated distribution than February with a longer left tail. The left tails for both February

and March are likely to be caused by the Beast from the East (22/02/2018 to 05/03/2018 [Met Office,

2020]). Removing the extreme dry bulb temperatures from April reveals it is the least concentrated

distribution with a longer right tail that is likely caused by inadequate sensor ventilation during more

frequent sunny weather conditions and the April hot spell (18th-22nd April 2018 [Met Office, 2020]).

Examining the variability of each month shows that April is the most variable month (highest standard

deviation) and March the least variable. As the majority of the observations occurred in March and

April, the characteristics of the combined temperature distribution share the most similarities with these

months. Namely, the distribution is concentrated around similar temperatures to March and has a

longer right tail like April. However, the combined temperature distribution has higher variability than

each individual month.

Figure 1: Distribution of dry bulb temperature observations for each month of the trial for the filtered
dataset. The purple bar segments indicate the number of February 2018 observations, the green seg-
ments March 2018, and the orange segments April 2018. The combined distribution is a stacked his-
togram that shows the contribution from each month to the total number of observations for each dry
bulb temperature.

3.2.2 Multiple reporting

The observations from this trial were designed to have a 1 minute temporal frequency. However, several

observations are reported within a minute of the previous observation but retained a 1 minute tempo-

ral frequency with other similar observations. An example of this is shown in figure 2 which shows

the dry bulb temperature observations for a journey segment from a single vehicle. The blue observa-

tions maintain a 1 minute temporal frequency with other blue observations while the red observations

occur 7 seconds after a blue observation and maintain a 1 minute temporal frequency with other red

c© Crown Copyright 2021, Met Office 7 of 29



observations. An observation reported within a minute of the previous observation will be referred to

as a multiple reported observation (MRO) and is suspected to be caused by phone or dongle hardware

technical issues. We note that the GPS metadata may be inaccurate for MROs due to the short time

between observations. This will be discussed further in section 4.3.

Figure 2: Time series segment of dry bulb temperature for a single vehicle taken on the 28th of February
2018. The blue observations retain a 1 minute temporal frequency with other blue observations. The
red observations retain a 1 minute temporal frequency with other red observations but always occur 7
seconds after a blue observation.

Denoting the time-gap between consecutive observations from the same vehicle on a given day as ∆t,

a histogram of all ∆t binned into one-minute intervals is shown in figure 3. Noting the log-scale, the

vast majority of ∆t have length 0-2 mins (i.e. the first two bins). The first bin contains all ∆t ∈ [0, 1)

minutes which occurs 15364 times. This corresponds to the number of MROs in the filtered dataset.

MROs form a large part of the filtered dataset and will need to be accounted for in the additional quality

check tests we impose on this data. The second bin contains all ∆t ∈ [1, 2) minutes which occurs 15025

times with 14646 corresponding to the observations which maintain a 1 minute temporal frequency with

the previous observation. Any ∆t ≥ 60 minutes are placed in the 60+ minute bin. Any ∆t ∈ [2, 60) are

caused by breaks in a vehicle journey, issues with the collection method such as loss of phone signal,

or removal of data without the necessary information needed for quality-control.

3.2.3 GPS-lagged observations

The method of data collection in the Met Office trial used smartphones to obtain location-based meta-

data. A common occurrence in the filtered dataset is GPS location not updating due to poor GPS signal,

the vehicle has not travelled far enough to trigger a GPS update or insufficient time between observa-
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Figure 3: The distribution of time-gaps between consecutive observations from the same vehicle and
day for the filtered data set binned into minute intervals. Note that a log-scale has been used for the
time-gaps frequency. Any time-gaps greater than 60 mins are placed into the 60+ minute interval.

tions. The default GPS update distance and period for the app are 500 metres and 60 seconds respec-

tively. This results in some observations having identical GPS location to the previous observation taken

by the same vehicle. These observations will be referred to as GPS-lagged observations.

Figure 4 shows data from the first half of a journey along the M5 motorway during the 25th of March

2018. We have plotted a time series of distance between consecutive observations calculated using the

great circle distance,

d = 2r sin−1

(√
sin2

(
Φ1 − Φ2

2

)
+ cos (Φ1) cos (Φ2) sin2

(
λ1 − λ2

2

))
, (1)

where Φ1 (λ1), Φ2 (λ2), are the latitudes (longitudes) of the two locations and r = 6371km is the radius

of the Earth. We also show the distance estimated using the time-gap between the observations and

the speeds of the observations,

demax = max(v1, v2)×∆t, (2)

where v1 and v2 are the recorded speeds at the time of the two observations and ∆t is the time-

gap between them. We have used two estimates to provide reference for when a distance is realistic

(i.e. d ≈ demax) or unrealistic (i.e. d ≈ 2demax). Instances of d = 0km indicate the observation at

that time is a GPS-lagged observation. Almost all instances of d = 0km are immediately followed by

demax < d ≤ 2demax which corresponds to the distance travelled between the observation before and

after the GPS-lagged observation.
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Figure 4: Time series of the distance between consecutive observations calculated using the great
circle distance (black squares), denoted d, the distance estimated using the time-gap between the
observations and the speeds of the observations, denoted demax (red-dashed line) and 2demax (purple
dot-dashed line), for the first half of a journey along the M5 motorway during the 25th of March 2018.
We have used two estimates to provide a reference for when a distance is realistic (i.e. close to the
red line) or unrealistic (i.e. close to the purple line). Instances of d = 0km indicate the observation at
that time is a GPS-lagged observation. Almost all instances of d = 0km are immediately followed by
demax < d ≤ 2demax which corresponds to the distance travelled between the observation before and
after the GPS-lagged observation.

4 Quality-control tests

In this section we describe the quality-control tests we use on the filtered dataset. A schematic showing

the complete quality-control process applied to the trial data is shown in figure 5. The climatological

range test (section 4.1), stuck instrument test (section 4.2) and GPS test (section 4.3) are applied in

parallel to the filtered dataset obtained in section 3. Observations that have passed each quality-control

test undergo a final sensor ventilation test (section 4.4). The final quality-controlled dataset will be

comprised of observations passed by every quality-control test. Throughout this section we use the

units that the data have been recorded in which are given in section 2.

4.1 Climatological range test (CRT)

The Climatological range test (CRT) identifies observations which fall outside of location-specific clima-

tological ranges [Limber et al., 2010, Boyce et al., 2017].
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Figure 5: The complete quality-control process applied to the complete dataset obtained from the Met
Office trial. The complete data is first prepared into the filtered dataset whereby all data without dry bulb
temperature and necessary metadata are discarded. The climatological range test (section 4.1), stuck
instrument test (section 4.2) and GPS test (section 4.3) are applied in parallel to the filtered dataset.
Observations which have passed each quality-control test undergo a final sensor ventilation test (section
4.4). The final quality-controlled dataset consist of observations that pass the sensor ventilation test.

4.1.1 Test implementation

To implement this test, we use the Met Office integrated data archive system (MIDAS) daily temperature

data [Met Office, 2006]. This dataset contains observations of the maximum and minimum temperatures

over a specified time window (usually 12 to 24 hours) for various locations in the UK. MIDAS temperature

data have a precision of 0.1◦C and an uncertainty of 0.2◦C.

To create our climatology dataset we use surface stations active during 2018. For each station, we

obtain the minimum and maximum dry bulb temperature for February, March, and April using pre-2018

MIDAS data. We note that the climatology of each surface station will depend on when it was made

operational and so the climatology length of each station will vary. Due to this, we remove the MIDAS

stations with site IDs 62083 and 62119 from our April climatology dataset as they became active in

2016 and 2017 respectively. We also remove the MIDAS stations with site ID 6313 and 15365 from

our April climatology dataset as they have implausibly small maximum temperatures despite becoming

active in 1914 and 1988 respectively. While it is possible there exist other similarly problematic MI-

DAS stations, we have not found any further evidence to support removing any other stations from our

climatology.

The CRT is performed by checking if the vehicle dry bulb temperature observations are within a pre-

determined tolerance of the minimum to maximum range for the nearest surface station. The nearest

surface station is calculated through the use of the great circle distance (1). (The vehicle GPS mea-

surement will be addressed in section 4.3).
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For this test we use a 2◦C tolerance to compensate for a number of factors. For example, dry bulb

temperature would be expected to change with elevation in the surface layer [Stull, 1988]. Additionally,

dry bulb temperature measurements taken on surfaces with higher albedo, such as grass, can produce

noticeably different measurements from those taken on surfaces with lower albedo, such as asphalt

(e.g. Huwald et al. [2009]). The purpose of the tolerance used in this test is to account for elevation

and surface differences between a vehicle and its nearest MIDAS surface station. This tolerance will

also partially compensate for extreme events that occurred during the trial such as the snow and low

temperatures that occurred during late February and early March 2018 and a hot spell that occurred

from 18th-22nd April 2018 [Met Office, 2020]. Operational MIDAS surface stations will likely be shielded

from radiation by Stevenson screens but radiation errors may still occur for calm and/or sunny conditions

due to poor ventilation [Harrison, 2015]. Vehicle dry bulb temperature sensors are not shielded from

radiation and will be affected by re-radiated heat from road surfaces [Donegan, 2017].

The CRT applied to a single vehicle on the 25th of March 2018 is shown in figure 6. Observations taken

during different segments of longer journeys are likely to be nearer to different MIDAS surface stations.

This is seen by the jumps in the climatological maximum and minimum lines. Each dry bulb temperature

observation plotted here would pass the CRT as each lies between the climatological minimum and

maximum air temperature of the nearest MIDAS surface station.

Figure 6: The dry bulb temperature observations (black) from one vehicle on the 25th of March 2018
and the climatological minimum (blue) and maximum (red) temperatures of the nearest MIDAS surface
station. Any fluctuation in the minimum and maximum lines can be attributed to the tested observation
being nearest to a surface station different from the previously tested observation. The two surface
stations used to test the observations around 16.30 have the same minimum but different maxima.
Each dry bulb temperature observation shown passes the CRT as each lies between the minimum and
maximum temperature of the nearest MIDAS surface station.
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4.1.2 Algorithm

The CRT algorithm is shown in algorithm 1. Here, Nfiltered is the total number of observations in the

filtered dataset, yi is the i-th observation in the filtered dataset with corresponding dry bulb temperature

Ti, θmax and θmin are the maximum and minimum climatological air temperature observations of the

nearest MIDAS surface station and tol is the tolerance.

Algorithm 1: Climatological range test pseudocode
1: for i = 1 ... Nfiltered do

2: Determine corresponding MIDAS climatology to use (i.e. February, March or April)

3: Find MIDAS station nearest to yi to obtain θmax and θmin

4: if θmin − tol ≤ Ti ≤ θmax + tol then

5: Pass yi

6: else

7: Flag yi

8: end if

9: end for

4.1.3 CRT results

Using the settings described in section 4.1.1 we find that 32129 observations have been passed (over

99%) by the CRT and 50 observations have been flagged. Since few observations were flagged by this

test we conclude that a 2◦C tolerance is suitable for this dataset but larger tolerances may be more

suitable for other vehicle-based observation datasets.

4.2 Stuck instrument test (SIT)

Persistence tests are a common quality-control test to determine whether an instrument is stuck and/or if

the variability of the measurements of some meteorological field is physically realistic (e.g. Zahumenskỳ

[2004], Drobot et al. [2011]). Standard persistence tests will be unsuitable for the filtered dataset due

to a large number of short journeys undertaken by participants during the trial. Furthermore, insuffi-

cient knowledge on the variability of dry bulb temperature on the scales measured by vehicles, as well

as whether this variability would be adequately reflected in low precision measurements, add to the

infeasibility of persistence tests. We therefore implement a simplified form of a persistence test which

only checks whether an instrument is stuck on some value. This test will be referred to as the stuck

instrument test (SIT).
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4.2.1 Test implementation

To implement the SIT for an observation ytest valid at time ttest we first create a sample of observations

ysample valid at times tsample from the same vehicle such that

ttest − 15 mins ≤ tsample ≤ ttest + 15 mins. (3)

The accepted sample time window is chosen to be symmetric in ttest so that observations at the start

and end of a journey can be tested. We note that a large time-window is chosen for our sample to

compensate for the low precision of the dry bulb temperature observations. Provided at least one ob-

servation in the test sample has a different dry bulb temperature value to ytest then ytest is passed.

4.2.2 Algorithm

The SIT algorithm is shown in algorithm 2. Here, Nfiltered corresponds to the number of observations

in the filtered dataset, ytest is the test observation taken at time ttest with dry bulb temperature Ttest and

sensor ID SIDtest and yi is the i-th observation taken at time ti with dry bulb temperature Ti and sensor

ID SIDi.

Algorithm 2: Stuck instrument test pseudocode
1: for i ... Nfiltered do
2: Set ytest = yi
3: for i ... Nfiltered do
4: if ytest 6= yi, ti ∈ [ttest − 15 mins, ttest − 15 mins] and SIDtest = SIDi then
5: Add Ti to sample S
6: end if
7: end for
8: if the sample is empty then
9: Cannot test ytest

10: else if at least one dry bulb temperature doesn’t equal Ttest then
11: Pass ytest
12: else
13: Flag ytest
14: end if
15: end for

4.2.3 Results

There are 30124 observations passed by the SIT, 2008 observations flagged, and 47 observations which

could not be tested as there were no other observations from the same vehicle in the sample win-

dow.
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4.3 GPS test

Accurate vehicle navigation requires frequent location polling and smartphone GPS based positioning

has been shown to be acceptable for vehicle tracking [Menard et al., 2011]. However, the accuracy

of GPS measurements is known to be heavily affected by the smartphone and application used [Hess

et al., 2012, Bauer, 2013]. The GPS test verifies whether the GPS metadata of individual observations

provide physically plausible vehicle locations.

4.3.1 Test implementation

To quality check the GPS measurements associated with the vehicle data we examine the location of

a test observation against the location of a reference observation. The reference observation will have

been taken up to 30 minutes before the test observation and by the same vehicle. We note that the first

observation taken by a vehicle and any observations with a time-gap larger than 30 minutes from the

previous observation cannot be tested by this method as there will be no suitable reference observation

to test against.

The GPS test first calculates the distance between the tested observation and reference observation,

dtest, through the great circle distance (1). Next, using the metadata of the two observations, we cal-

culate estimates of the minimum and maximum distances the vehicle could have travelled between the

times the reference and test observation were taken. The maximum distance will be estimated by (2)

where v1 (v2) is replaced by the speed of the test (reference) observation vtest (vref ) and ∆t is the time-

gap between the test and reference observations. Similarly, the minimum distance will be estimated

by

demin = min (vtest, vref )×∆t. (4)

The estimates provided by (2) and (4) may not be reflective of the true distance traversed by the vehicle

due to speed fluctuations and the route travelled between the observations. When estimating the max-

imum distance we must account for the vehicle having a larger speed than vtest and vref between the

times the observations were taken. When estimating the minimum distance we must account for more

factors than with the maximum distance. In addition to the vehicle having a lower speed than vtest and

vref between the observation times, the journey may occur during heavy traffic congestion, the route

travelled may not be a straight line, or the route traversed may be through a residential area. Addition-

ally, MROs must be accounted for as it is possible their GPS will not have been updated because of the

minimum time and distance update conditions on the app (see section 2).

The tested observation will pass the GPS test if Γmin × demin ≤ dtest ≤ Γmax × demax where Γmin < 1

and Γmax > 1 are tolerance constants used to account for the uncertainty in demin and demax respectively.

When an observation is passed by the GPS test, if ∆t ≥ 1 minute and dtest > 0km between this passed
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observation and the reference observation it was tested against it becomes the reference observation

for the next test observation. Otherwise, the reference observation is unchanged for the next test

observation. This is to avoid GPS-lagged observations being reference observations as they are known

to have inaccurate GPS (see section 3.2.3). If the next test observation is over 30 minutes from the

reference observation, the test observation is unable to be tested and we set it to be the next reference

observation.

For our implementation we set the tolerance constants as Γmax = 1.3 and Γmin = 0.6. To show

the suitability of our choices for Γmax and Γmin in the GPS test we calculate the distances between

observations and their respective reference observations denoted dtest. Figure 7 shows each dtest

plotted against their corresponding demax (black dots) and lines dtest = demax (red dashed line) and

dtest = 1.3 × demax (red solid line). The gradients of the two lines represent possible choices for Γmax.

By using Γmax = 1.3, all points above the solid line will be flagged by the GPS test, since for these

data, the vehicle appears to have travelled further than physically plausible since the previous reference

observation. Points below the solid line are not flagged but must also pass a minimum distance test.

Figure 8 shows each dtest plotted against their corresponding demin (black dots) and lines dtest = demin

(blue dashed line) and dtest = 0.6 × demin (blue solid line). The gradients of the two lines represent

possible choices for Γmin. Similarly to figure 7, by using Γmin = 0.6, most points below the solid

line will be flagged by the GPS test, since for these data, the vehicle appears to have travelled less

than physically plausible since the previous reference observation. Points above the solid line are

not flagged but must also pass a maximum distance test. Additionally, we will set Γmin = 0 when

vref , vtest < 25km/h or ∆t < 1 minute as we expect the test observation to be relatively near to the

reference observation. (The specific choice of 25km/h is related to the sensor ventilation test which

will discussed in section 4.4). Therefore, many observations beneath the solid line in figure 8 will not

be flagged by the GPS test. We note that the horizontal threshold dtest ≈ 0.5km in figures 7 and 8 is

caused by the 500 metre default GPS update distance used by the app.

4.3.2 Algorithm

The GPS test algorithm is shown in algorithm 3. Here, NIDs corresponds to the number of unique

sensor IDs in the filtered dataset which determine if observations come from the same source (i.e.

vehicle), Nobs is the number of observations for the i-th sensor ID and yj is the j-th observation such
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Figure 7: Scatter plot to show the distances between observations and their respective reference ob-
servation, denoted dtest, against their corresponding demax (black dots) and the lines dtest = demax (red
dashed line) and dtest = 1.3 × demax (red solid line). The gradients of the two lines represent possible
choices for Γmax. We note that the threshold dtest ≈ 0.5km is due to the 500 metre default GPS update
distance of the app used in this trial. By using Γmax = 1.3, all points above the solid line will be flagged
by the GPS test, since for these data, the vehicle appears to have travelled further than physically
plausible since the previous reference observation.

Figure 8: Scatter plot to show the distances between observations and their respective reference ob-
servation, denoted dtest, against their corresponding demin (black dots) and the lines dtest = demin (blue
dashed line) and dtest = 0.6 × demin (blue solid line). The gradients of the two lines represent possible
choices for Γmin. We note that the threshold dtest ≈ 0.5km is due to the 500 metre default GPS update
distance of the app used in this trial. By using Γmin = 0.6, all points below the solid line will be flagged
by the GPS test, since for these data, the vehicle appears to have travelled less than physically plausible
since the previous reference observation.
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that yj occurs before yj+1.

Algorithm 3: GPS test pseudocode
1: for i ... NIDs do

2: Collect all observations y belonging to the i-th sensor ID into a test dataset

3: Set yref = y1

4: for j = 2 ... Nobs do

5: Calculate the time-gap ∆t between yref and yj

6: if ∆t ≥ 30 mins then

7: Set yref = yj

8: else

9: if ∆t < 1 minute or vtest, vref < 25km/h then

10: Γmin = 0

11: else

12: Γmin = 0.6

13: end if

14: Calculate demin, demax and dtest

15: if Γmin × demin ≤ dtest ≤ Γmax × demax then

16: Pass yj

17: if ∆t > 1 minute and dtest > 0km then

18: Set yref = yj

19: end if

20: else

21: Flag yj

22: end if

23: end if

24: end for

25: end for

4.3.3 Results

There are 20162 observations that pass the GPS test of which 9939 are MROs. There are 11181 flagged

observations and 836 observations which could not be tested. The results of the GPS test are sum-

marised in table 2. The majority of the observations that couldn’t be tested were due to large time-gaps

between the test and reference observations.

For the flagged dataset, 1331 (1429) observations were flagged for having dtest > demax (dtest < demin).

We note that it is possible many of these observations may have accurate location metadata but have

inaccurate speed and time metadata resulting in the disagreement between dtest and demax or demin. The

remaining 8421 flagged observations were GPS-lagged observations. The GPS-lagged observations
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are primarily due to the 500 metre default GPS update distance of the app but also because of poor

GPS signal resulting in more time being needed for a location update.

Determining the uncertainty of the GPS for this dataset would require examination of the GPS uncer-

tainty caused by the smartphone app and each smartphone make used by the participants during the

trial. Merry and Bettinger [2019] found an average horizontal position accuracy in urban areas of 7-13m

for an iPhone 6. For convection-permitting NWP this would likely be an acceptable GPS uncertainty for

vehicle-based observations.

A greater concern is the minimum GPS update distance used by the app (500m) which resulted in a

substantial portion of the filtered dataset being flagged by the GPS test. For all crowdsourced obser-

vations accurate spatial location metadata are needed due to the scales of the atmospheric processes

being observed. This is especially true for vehicles as their locations are non-stationary.

4.4 Sensor ventilation test (SVT)

The final quality-control test we apply in this report is the sensor ventilation test (SVT). As discussed

in section 1, in order to produce realistic temperature measurements it is necessary for sensors to be

adequately ventilated. For vehicle-based observations, sensor ventilation will be determined by the

speed the vehicle is travelling at. From our examination of the dry bulb temperatures of the filtered

dataset in section 3.2.1, we define the sensor ventilation threshold for the filtered dataset as vsensor =

25km/h.

The SVT is used to check for adequate temperature sensor ventilation by removing any observations

with speed less than the sensor ventilation threshold vsensor. This test is implemented last as each

observation can be tested individually and observations flagged by this test are still useful for the SIT or

GPS test. We also note that Γmin = 0 was used in the GPS test for observations with speed less than

vsensor as those observations will be flagged by the SVT regardless of the GPS test result.
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Number of tested Number of passed Number of flagged Number of untested
observations observations observations observations

Climatological range test 32179 32129 50 0
Stuck instrument test 32179 30124 2008 47

GPS test 32179 20162 11181 836

Sensor ventilation test 19094 17425 1669 0

Table 2: Summary table containing the results from all quality checking tests.

4.4.1 Algorithm

The algorithm for the SVT is shown in algorithm 4. Here, N is the number of observations that have

passed all previous quality-control tests and yi is the i-th observation with corresponding speed ui.

Algorithm 4: Sensor ventilation test pseudocode
1: for i = 1 to N do

2: if ui ≥ 25 then

3: Pass yi

4: else

5: Flag yi

6: end if

7: end for

4.4.2 Results

The SVT is applied to the 19094 observations that have passed all other quality-control tests. In total,

the SVT flags 1669 observations (8.7%). We note that a large number of observations relative to the

number tested are flagged by this test due to the large number of observations that occurred when the

vehicle was stationary (i.e. 0km/h speed).

5 The quality-controlled dataset

The dataset resulting from the quality-control process described in section 4 consists of 17425 observa-

tions (25.6% of the complete dataset). A summary of the quality-control test results is given in table 2.

The number of observations that passed all tests, were flagged by at least one test, and could not be

tested by all tests for each day is shown in figure 9.

A summary of the descriptive statistics for the quality-controlled dataset and each month is given in table

4. In total, 2833 observations were taken in February, 9012 in March, and 5580 in April. The ratio between

the number of observations that occurred in each month in the quality-controlled dataset is relatively

unchanged from that of the filtered dataset. The distributions of the dry bulb temperatures for each
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Figure 9: The observations that passed all tests (blue bar segments totalling 17425), were flagged by
at least one test (yellow bar segments totalling 13897) and could not be tested by all tests (red bar
segments totalling 36637). We note that the red bar segments include all observations removed in the
initial filtering stage and those untested by any QC test.

month, shown in figure 10, retain the majority of the characteristics of their filtered dataset counterparts

discussed in section 3.2.1. There has been a slight reduction in skew and kurtosis for February and April

as higher temperatures have been removed by the SVT. Additionally, extreme temperature anomalies

have been removed from April by the CRT.

February March April All data

Number of observations 2833 9012 5580 17425
Mean 3.52◦C 6.67◦C 11.29◦C 7.63◦C

Standard deviation 4.04◦C 3.30◦C 4.26◦C 4.64◦C
Skew −0.22 −0.38 0.72 0.26

Excess kurtosis −0.88 0.13 0.92 1.07

Table 3: Summary of the descriptive statistics for the quality-controlled dataset and split into each month.

February March April All data

Number of observations 2833 9012 5580 17425
Mean 3.52◦C 6.67◦C 11.29◦C 7.63◦C

Standard deviation 4.04◦C 3.30◦C 4.26◦C 4.64◦C
Skew −0.22 −0.38 0.72 0.26

Excess kurtosis −0.88 0.13 0.92 1.07

Table 4: Summary of the descriptive statistics for the quality-controlled dataset and split into each month.
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Figure 10: Distribution of dry bulb temperature observations for each month of the trial for the quality-
controlled dataset. The purple bar segments indicate the number of February 2018 observations, the
green segments March 2018, and the orange segments April 2018. The combined distribution is a
stacked histogram that shows the contribution from each month to the total number of observations for
each dry bulb temperature.

6 Summary and recommendations

The use of crowdsourced observations in numerical weather prediction is a new research area that is

quickly receiving much attention from the meteorology community. Indeed, the high spatio-temporal

resolution of the observations is particularly attractive for convection-permitting data assimilation where

expansion and management of conventional scientific surface observing networks are too costly.

This report details the quality-control process applied to a novel low-precision vehicle-based observa-

tion dataset. In order to quality-control the raw dataset, we first needed to filter the dataset in order to

determine which data had the necessary information. The climatological range test (CRT), stuck instru-

ment test (SIT), and GPS test were applied in parallel to the filtered dataset. The sensor ventilation

test (SVT) was applied to data that had passed the three previous tests. We note that as the CRT

can be applied to each observation individually it may be more suitable to apply this test after the SIT

or GPS test. The quality-control dataset consists of the 17425 observations (25.6% of original dataset)

which have passed all quality-control tests. This is in stark contrast to the quality-control of scientific

surface observing networks where approximately 10% of dry bulb temperature observations are flagged

or discarded. Recommendations for future quality-control and data collection are given at the end of

this section.

The CRT was used as a range validity test on the dry bulb temperatures. This type of quality-control

test has been successfully used for smartphone observations [Hintz et al., 2019b] and vehicle-based

observations [Chapman et al., 2010, Limber et al., 2010, Boyce et al., 2017]. To implement this test
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we used monthly climatologies of the MIDAS surface stations active during the trial. Hence, this test is

limited by the climatology of each MIDAS station. The CRT flagged the lowest number of observations

out of any quality-control test and would be suitable for operational quality-control of vehicle-based

observations.

The SIT was used as a simplified persistence test to determine if the sensor was stuck on some value.

In order to implement this test, a vehicle identifier was required to determine if observations came from

the same source. For operational persistence tests, it will be important to consider how observations

taken from short finite journeys can be tested for persistence. We note that, despite the simplicity of this

test, there is still a small amount of data in the filtered dataset unable to be tested. We also note that,

because of the low precision of the data, it is also possible that valid observations have been flagged by

this test. However, as the majority of observations able to be tested were passed, it is unlikely that our

sample time-span was an issue for the implementation of this test on the filtered dataset.

The GPS test was performed to verify the plausibility of the GPS metadata. GPS accuracy has been an

issue for crowdsourced smartphone observations where it is important to know the elevation of pressure

observations [Madaus and Mass, 2017, Hintz et al., 2019b] but inaccuracies in the horizontal have not

been a reported concern. Similarly to the SIT, vehicle identification is required to implement the GPS

test. The GPS test involves comparing the distance between GPS coordinates of two observations with

minimum and maximum estimates calculated through their metadata. As such, the results of this test are

also dependent on the accuracy of the speed and time metadata of the observations. We also note that

the starting observation of a journey or after a large time-gap was used as a reference observation in

this test despite their GPS being untested and possibly inaccurate. The number of flagged observations

is substantially greater than the number of observations flagged by the CRT, SIT and SVT combined.

This is primarily due to the existence of GPS-lagged observations in the filtered dataset which are

caused by poor GPS signal, insufficient distance travelled, or time between observations to trigger a

GPS location update. As vehicles are able to traverse a greater distance in a short time-span than

some current operational weather prediction model grid spacing it is important that lags in GPS be

accounted for.

The SVT is the final quality-control test and is another filtering test where observations with speed less

than vsensor = 25km/h are flagged. A similar precaution was used by Knight et al. [2010] who found

vehicle-based temperature observations to be reasonably accurate provided the vehicle was moving for

a number of minutes prior to the observation time. Despite being applied to fewer observations than any

other test, a large number of observations were flagged by the SVT. It is expected that a large amount

of vehicle-based observations will be flagged due to traffic congestion or driving through residential

areas.

Unfortunately, we were unable to perform a spatial consistency test on the filtered dataset due to a lack

of observations occurring at similar locations and times. Additionally, due to the high spatial resolution of

this dataset, we were unable to obtain an independent dataset which most observations from the filtered
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dataset could be tested against. It is possible in the future that vehicle-based observations form vast

observation networks that are densest in urban areas making spatial consistency tests more feasible.

Additionally, the examination of any biases present in the observations was also infeasible due to a lack

of data. Vehicle-based observations are likely to be biased due to the sensing instrument and heat from

the car engine and road surface.

Recommendations for future data collection and quality-control of vehicle-based observations are as

follows.

• A substantial amount of data was found without valid speed metadata. Correcting the OBD dongle

or app settings/features causing this will result in fewer observations discarded prior to the quality-

control process.

• Reduce the GPS update distance to reduce the number of GPS-lagged observations.

• The climatology datasets used in the CRT each contained around 400 MIDAS stations situated

within the UK making this test a computationally expensive matching procedure. In operational

settings, it may be more appropriate to use reduced datasets such as monthly regional climatolo-

gies. Additionally, the comparison of vehicle-based observations with WOW surface station data

may provide another suitable quality-control test.

• The temperature observations obtained from the Met Office trial are all low-precision measure-

ments. Because of this, a simplified persistence test was used as a quality-control test. If precision

was increased to 0.1◦C then more standard persistence tests can be used as a quality-control test.

This will allow for testing of whether the sensor is stuck and whether the variability of the observed

fields is physically plausible simultaneously.

• Both the SIT and GPS test could not have been implemented without a sensor ID. Due to data

privacy, it may be unfeasible to have sensor IDs with potential vehicle-based observation sources.

Using appropriate encryption techniques on vehicle sensor IDs may allow for the use of vehicle

time series in quality-control (e.g. Verheul et al. [2019]). Alternatively, if a phone app is used

in the data collection process it may be possible to quality-control locally on a smartphone be-

fore uploading to WOW servers. Such methods have been used for the quality-control and bias

correction of smartphone observations [Hintz et al., 2019b].

• To check if a vehicle sensor is stuck without vehicle observation time series it may be suitable

to record the amount of time since the vehicle observed a different value as metadata for that

observation.

• To check GPS accuracy without vehicle location time series it would be useful to record GPS

signal strength between a satellite and a phone, as well as how many satellites are involved in the

GPS polling, as metadata for an observation. Having access to this information will also assist in

determining the GPS measurement uncertainty. Additionally, provided enough observations are
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available, spatial consistency tests may be capable of flagging some observations with incorrect

GPS.

The Met Office proof-of-concept trial has shown it is possible to obtain vehicle-based observations from

in-built vehicle sensors using smartphones and OBD dongles. However, the observations obtained

through this trial leave much to be desired. While the quality-control procedure presented in this report

may be a suitable reference point for other crowdsourced datasets, there is much improvement to be

made in both data collection and quality-control for such observations to be utilisable. It is therefore

necessary to conduct further trials possibly with alternative data collection methods which address the

issues raised in this report.
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