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j B INTRODUCTION

The High-resolution Infra-red Radiation Sounder (HIRS-2) and
Microwave Soundina Unit (MSU) on the TIROS-N series of vpolar-orbiting
satellites provide alobal measurements from which temperature and
humiditv orofiles mav be retrieved. Humiditv information is
principally contained in data from 3 channels of HIRS-2 (channels
10, 11 and 12)., althouogh emission from water vapour makes a minor
contribution to the radiances measured in some other channels.
Temrerature and humidity profiles are commonlvy vretrieved by
straightforward linear reagression on the measured brightness
temperatures. It will Dbe shown that. while such aprocedure 1is
justified for temrerature, the humiditv oroblem is verv non-linear and
for best results should be treated as such. In this paper the linear
rearession of mixinag ratio with brightness temperature is used as a
control against which a new method of retrieval is tested. The latter
involves the estimation of temperature usinag integrated water vavour
as the vwvertical coordinate. The theorv behind this approach is
described in section 2.

Section 3 describes the oriagins of the data base used in the
creation of the necessary statistics and explains how it is used to
agenerate vrearession coefficients. The mechanics of extracting
humiditv information from the temperature profiles is explained in
section 4, and the error analysis wused to +iudge the relative
effectiveness of a method in section 5. Finallv, sections 6 and 7
present results and conclusions of the study.

2. THEORY

Temperature retrieval 1is commonly achieved by straichtforward
linear least squares regression on HIRS and MSU brightness
temperatures. An analvsis of the radiative transfer equation will
show that this is theoretically ijustifiable :

R&) = /9 BITL),»).dT(Re)/dp . dp + T(p,)] €B(T,») +-Y R ..... 1.

where R(V) is the radiance observed at the satellite at wavenumber V ,
T(p) is the temperature of the atmosphere at pressure o,
B(T,V) is the Dblack-body function (source function of the
radiation),
Ti(p,.pz) is the transmission of the atmosphere from ovressure
By to pe.
ps and Ts are the surface pressure and temperature respectively,
£ is the surface emissivity (at V)

and Rge (V) is the radiance enitted downwards by the atmospvhere

incident at the surface.

Therefore the first term on the right-hand side is the radiance from
the atmosphere and is a weighted black-bodv function. The second term
is the contribution from the surface and the third is the reflected
component of downward atmospheric radiance. At infra-red wavelenaths
€21, and so for the purposes of this analvsis the reflected term will
be neaglected.




Althouah ecuation 1 applies to monochromatic radiation. an
expression of the same form can be used for a radiometer channel of
finite bandwidth with the following provisos. B(T(p).V) 1is replaced
by an expression of similar form which is a weiaghted mean of the
Planck function over the bandwidth of the channel. Similarlv T(p, .p3)
is a mean transmittance over the bandwidth. Because the variation of B
B with temperature chanages only slightly over the bandwidth of anv j
channel, the errors introduced by this approximate formulation are
small. ¥

Equation 1 is exact in terms of Planck function wprofiles and 5
radiances. More useful is an approximate form in terms of atmospheric

temperature profiles and measured briaghtness temperatures
respectivelyv. With the approximation of €= 1, we then obtain
o
) = [HOWGdp » bk e 2.

where t(p) is the temperature profile expressed as a difference from a
mean profile,
tg(¥) is the brightness temperature expressed as a difference
from a value appropriate to the mean profile,

W(T,p) = dTe) £¢ 48010y)  dRW) \
dap AT dTelv) ;
and Wg = Tlgo) . £1 485 ' LD
4T dTR(¥)

N -

(Throuahout this paper variables in lower case (excepting pressure, p)
refer to differences from the mean.)

2
f{} is found in practise to be only weakly temperature devend: nt
Also T = ¢ ¢ where {(( is the optical depth of the atmosphere to
pressure p from space. ie,, ©
(p = k(zm)/)lz) 8% . o 3.
i ()
k = absorption coefficient mer unit densitv,
/» = density (of absorber).
For a uniformly mixed gas such as carbon d10x1de/ﬂd-c/kJﬂ where C is
the constant mixing ratio. Therefore, because -k 1is only weakly
temperature dependent, 4 is mainlv a function of pressure.
Consequently T and therefore Vi(atrldo ) is sufficiently independent
of temperature so as not to invalidate the linear theory given below.
Because of the form of T and the monotonic increase of { with
pressure. notice that "
/ Wip)dp. So that we can rewrite the RHS of equation 2 : ;
-

/‘Hﬂml’)dp* GWs = /"ff)”(v)dp + /hwr\ dp /ﬂr)kl(v)dr""""' 4.

where for POP, He=b
the equation has thus been linearized and can be written in discrete
form : \ :
Es - N-tlv" e e e o e s e 4&.
where vectors have components corresponding to the n channels and m
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levels of profile discretization respectively. We wish to invert
this using a predictive ecquation of the form

ty = 2. b 5.

(Variables with a circumflex refer to an estimated value rather than
the true value.)

The predictive matrix la can be found by numerous methods, linear
least sguares regression being simple and stable :

-\
< ( EES . e—_&) ( 3. E_E\ = S=E(p)‘{1 . ék‘,ﬂ, .......... 0.

e

éxyj is the statistical covariance matrix of y with x.)

We could also attempt to retrieve humidity in the same way :
~ ']
e e S0 T

but this implies ke = k'cw
or  T) = / cp. leP) dp

This is not a physicallv correct radiative tranfer ecuation because
the temperature dependence of the radiance has been lost and because k'
should be a function of c(p).

Followina a method proposed (and tested) by Rosenkranz et
al.(1976), we can implicity include water vapour into a temperature
retrieval by using its integrated amount as an alternative vertical
coordinate :

(]

e = [ HOWWdu 4+ Elud Wik 3 NP

where ukp)=/' Qdflg , the overburden of water vapour at pressure p,
o :

and Ug = j/cdﬂs , the surface overburden of water vapour.
f

fw)

Now, for a vertical path
(W = k(p)cdp/s P U nE e B
o

where K is assumed almost constant (ie. neglecting the change of
absorption coefficient due to pressure and temperature along the path
of integration compared with that due to the change of mixinag ratio).
Therefore equation 7 is a valid temperature retrieval. Eguation 8 is
only a valid approximation for water vapour channels otherwise
pressure is the dominating variable.




By analogy with equations 4 , 4a and 5

belo) = /d By Wiw du . Where for w7ug Ha) = Elus) .......... 9.
Ve

kg = \('\u). ’cS\_A) ......... Sa.

By = D7tk 10.

By estimating temperature both as a function of pressure and of
integrated water the vapour profile can be extracted as shown in
figure 1. Shown is an ideal case in that both profiles are
monotonically increasing and the temperature of the isothermal in T(U)
(see section 3) is eaqual to T(1000mb). Departures from this
straightforward case are discussed in section 4. The retrieved
humidity parameter in this instance is U(p) (integrated water amount).
The control method produces C(p) (mixinag ratio), integration of which
is straightforward and accurate, random errors tending to cancel.
Obtaining C?p) from U(p) by differentiation 1is less stable and a
reagression method is preferred. Appendix A gives the formulae for
differentiating and integrating variables assuminag linear and
logarithmic dependencies.

The weightina functions of HIRS and MSU channels for a typical
atmosphere are shown in fiqure 2. The water vapour channels are HIRS
channels 10, 11 and 12, while other channels (principally 6, 7 and 8),
thouoh not desioned to measure water vapour, are slightly sensitive to
it. There can be seen to be reasonable coverage from 500mb to the
surface and in principle, then, retrievals of water vapour mixing
ratio should be possible in this region.

There 1is, however, a fundamental 1limitation on any method
attempting to retrieve, from radiances, water vapour profiles in the
near surface layvers. Perturbation of the water vapour content at a
level not only changes the radiance emitted from that level but also
from all levels below by virtue of the change in transmittance of the
path. If there is no temperature gradient below the perturbed layer,
the increased water vapour will emit as much radiation as it absorbs
from below. So that there will be zero sensitivity to absorber amount
at a certain level if the atmosphere is isothermal below that level.
Low temperature gradients will give a 1little information but the
retrieval will be correspondingly sensitive to errors in the measured
radiances and to those introduced in the inversion process. For this
reason HIRS will tend to be relatively insensitive to low level water
vapour, since there is usually little contrast between the temperature
of these layers and the surface brightness temperature.

Eigenvector regression was used throughout this project because it
has several distinct advantages over more traditional techniaues
(Smith and Woolf,1976). Most important of these 1is the method’s
insensitivity to assumed and actual noise levels - whether these are
mismatched or not it produces near optimum results . Further,
eigenvectors that are essentially only fitting noisy measurements can
theoretically be identified by their eigenvalues and removed from the
expansion. Thus truncated eigenvector regression coefficients are
claimed to be insensitive to noise without oversmoothing retrievals.



Finally, all channels can be included in the regression despite the
fact that most do not satisfy ecuations 9, 9a and 10. Such channels
may supply some information but are substantially treated as noise and
iagnored. The fact that water vapour is correlated with temperature
means that there is information on T(U) in carbon dioxide channels and
their inclusion does improve the retrieval.

‘e




3. GENERATION OF REGRESSION COEFFICIENTS

For the purpose of testing the new algorithm it was decided to
compare its resulting retrievals with those produced by
straightforward reagression of mixing raio against brightness
temperature. Therefore it was reasonable to use svnthetically derived

radiances rather than collocated satellite/radiosonde pairs. This
eliminates confusion due to inaccurate humidity and temperature
measurements, and collocation errors. Two tvpes of representative

radiosonde data were available. Firstly the standard NESS set of 1200
profiles which was split into three 1latitude - bands LOWLAT (from
0 to 30 deg.), MIDLAT (from 30 to 60 deg.) and HILAT (from
60 to 90 dea.) each of 400 profiles. Secondly, use was made of a set
constructed for the European and N.Atlantic areas. This set contained
800 profiles for each month, 400 for land and 400 for coastal and
oceanic based radiosonde stations, obtained from seven vyears of
ascents (Pescod and Eyre, 1983). Data for September (SEPT) and June
(JUN) was wused in the study as well as a combined set of 40 profiles

from each month (AMALG). All sets consisted of temperature and

humidity data at non-standard pressure levels.

The synthetic radiances were obtained wusing TOVSRAD, a Met.0.19
program based on Madison’s routines RAOBHIRS and RAOBMSU (Eyre, 1984).
TOVSRAD interpolates the raw profile to 40 standard levels and
calculates egquivalent black body temperatures for 19 HIRS and 4 MSU
channels, by numerical intearation of the radiative transfer equation.

The general procedure for obtaining the coefficients 1is shown in
fiqure 3. All statistical regressions are done using the routine
CALCOF, which acts on covariance matrices of the predictors and
predictands and includes an optional number of eigenvectors.
Uncorrelated noise in the brightness temperatures is included into the
regression by adding its expected variance along the diagonal elements
of the covariance nmatrix. As sugoested earlier, the effect of
mismatched noise 1levels in eigenvector regression is supposed to be
minimal but was tested nevertheless. The noise values used are
obtained from studies of real data and are typical of the accuracies
of cloud-cleared, limb-corrected brightness temperatures. In
principle it 1is possible to find noise-fitting eigenvectors by their
eigenvalues. In practice identification proved difficult and so the
number of eigenvectors used was chosen empirically to minimise errors
in a noisy independent data set. The exact number was not found to be
critical and 9 eigenvectors were used in cases where there were 12
levels of discretization and 14 for the 24 U levels.

Three sets of so called ‘primary’ coefficients are calculated using
program MAIN with profiles and brightness temperatures from the data
set. These coefficients are all regressions on brightness
temperatures : mixing ratio at fixed pressure levels, temperature at
fixed pressure levels and temperature at fixed 1levels of integrated
water vapour. For each profile T(p), C(p) and T are read from the
data set and T(U) is calculated from T(p) and C(p). The first step is
to integrate C(p) wup to U(p) and this is done assuming logarithmic
increase of C(p) for pressures lower than 700mb and a linear increase
thereafter (see appendix A). Suitable interpolation of the U(p)
profile with the T(p) profile gives T(U), the temperature at the 24
standard U levels.

<
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As each profile is processed covariance matrices of t(p), c(p), twﬁand
t(U) are constructed. On completion these are submitted to CALCOF for
calculation of the rearession coefficients.

Two sets of ’'secondary’ coefficients are generated, ‘secondary’ in
the sense that the predictor is itself a retrieved variable:

a) In order to test how much water vapour information can Dbe
extracted from the temperature profile alone, mixing ratio is
regressed against retrieved temperature profile, the latter
obtained using the ’‘primary’, coefficients.

b) The new algorithm produces*U(p) as the water vapour parameter.
Retrieval of e(p) from U(p) by simple differentiation leads to
large errors and substantial biases and a more stable route is
to reagress mixing ratio against the retrieved U?p)kprofiles.
Regression takes account of the average aradient of U(p) about
the pressure level concerned and consequently makes the
resulting C(p) less sensitive to random errors in adiacent
levels.

These '‘secondary’ coefficients are calculated by CALCOF. Data sets
of retrieved T?p) and Ulp) are aenerated by applying the 'primary’
coefficients to the original brightness temperature set. Routine REG

forms covariance matrices of these, and of c(p), and sends them to

CALCOF for calculation of the coefficients.

Thus, in all, five sets of coefficients are calculated for each
data-set. .




4., APPLICATION OF RETRIEVAL METHOD

Once coefficients have been agenerated for a pvarticular data set
they can be used on any other set 1in a single program that
simultaneously runs four methods of retrieving C(p) (see figure 4).
To obtain the best from the new algorithm it is found necessaryv to
‘tune’ the various free parameters and to apply some empirical
procedures to the peculiar problems associated with the interpolation
routine, as explained below :

a) Standard U Levels

Since the guantity of water vavour varies considerably between data
sets it 1is desirable to adiust the standard U levels so that the
highest is equal to or -dust larger than the mean surface overburden.
If the highest U 1level (U(24)) were made large enouagh to cover all
sets then for some there would be a loss of resolution in T(U) as well
as ill-defined isothermal regions (see below).

In accordance with mean profiles, U was made to varv
logarithmically over its first 14 levels (from 0 mb to about 650 mb)
and linearly thereafter. This also ensures an adequate number of
levels in the more critical near-surface lavers.

b) Non-Monotonic Profiles

Problems arise when interpolatina between TQU) and T(p) levels when
one or both of them are non-monotonic. Profiles with corresvonding
maxima and minima could be matched with sufficiently elaborate
algorithms but this has not been done for two reasons. Firstly this
is onlvy a significant problem when there are many larage scale
inversions such as in Arctic reagions (eg HILAT). Secondly it is in
the nature of the radiative transfer equation for water that there is
no information on mixing ratio when the atmospvhere is isothermal from
the surface (see section 2), It is doubtful, then, that retrievals
from inverted or isothermal atmospheres would be of much value and so,
in this study, retrievals involving non-monotonic temperature profiles
were reijected.

c) Identification of Isothermal

As described in section 2, U levels greater than the surface
overburden are assigned T(1000mb) as their temperature. Therefore, an
isothermal appearing in the retrieved T(U) vector indicates the
surface overburden. However, depending on the spread of the U levels
and the accuracv of the rearession, the start of the isothermal will
be more or 1less well defined. Figure 5 shows the tests made to
confirm the existence of the surface isothermal; an increment in T(U)
less than DT1 1is the criterion for the start of an isothermal, DT2
checking that it is the surface isothermal and not a aenuine
atmospheric feature. The sizes of these two temperature increments

are chosen empirically to minimise the bias on the retrieved (p)
vector.

v
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d) Interpolation and Extrapolation

From the T?p) and T(U) profiles, U?p) is extracted bv interpolating
{logarithmically) as shown in figure 1.

. Examination of individual retrievals shows that errors in TQU) and
T(p) are not 100% correlated. They are correlated to some extent, as
witnessed by the fact that U(p) derived from the true T(p) vector is
usually less accurate than that derived from the estimated wvector
T(D) Thus cases frequently occur where the T?p) vector terminates
above the isothermal region in T(U), as shown in fiqure 6. At a first
level of sovrhistication the identified 1sotherma1 is taken to indicate
UT1000mb) and the assianment of near surface U(D) values undertaken as
shown in the fiagure. When the TQp) vector terminates below the
isothermal no problem arises. '

For the case,dwhere no isothermal is present and the Tﬁp) vector
exceeds the T(U) vector, some sort of extrapolation is required.
Fiqure 7 demonstrates the way in which half the T(U) profile is wused
for this, because extrapolations based on the last T(U) level interval
are prone to be very unstable.

, For cases where there is an isothermal in T(U) and the TQn) vector
is displaced by a large amount (i.e. the profiles are inconsistent)
it may be that one type of profile is more often in error. There are

«several possible ways  of dealing these situations such as ‘nudaing’

profiles together, ignoring isothermals, etc. Further study of this
sort of discrepancy may lead to the identification of ’‘bad’ retrievals

,and their subsequent discarding. Some of these refinements are

discussed later.



Page 10

5. METHOD OF ERROR ANALYSIS

As each profile is processed the estimated water parameters are
compared to actual values and the error statistics are built up.
Residual error (RE), variance (see appendix B) and mean vectors are -
calculated for C(p) and U(p) as well as the Fractional Unexplained
Variance (FUV).

The RE squared may be described as the ‘unexplained variance’. that
is, the variance in the data set not reproduced by the regression
relation. This leads to FUV:

Fov = REV/vae = N L t‘j-‘ﬁy'/hlz(u-ﬁ)z

FUV is useful in two ways. Firstlvy it takes account of the
variance of the data set so that comparisons between sets, or between
subsections of a set, with different variances are possible.
Secondly, with values ranging from 10 to 10° ,plotted REs are
difficult to evaluate. All meaninagful FUVs 1l1lie between 0 and 1
(between vperfect and perfectly useless regression) and the relative
success of different routes is more obvious.

.
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6. RESULTS
6.1 RESULTS USING THE BASIC ALGORITHM

Henceforth the new algorithm will be denoted by UM (U method), the
straightforward regression of C(p) versus t by PM and regression of
fC(p) versus retrieved T(p) by CT.

Initial tests done with independent and dependent data sets showed
.that there was little detrimental effect in using the former providing
that it was from the same origin, for example, from the same month, if
a monthly set was used to generate the coefficients. Since a valid
comparison between the new and old algorithms is possible wusing
dependant data, the set used to generate the coefficients is also used
to carry out the error analysis (reducing the number of bulky files
required). The sensitivity of the two methods to independent data
though is of importance and results of a monthly set (SEPT), dependent
and independent, are presented in figqures 8 and 9. FUVs in the
independent set are higher by about 0.04 at low levels and almost
identical at pressures 1lower than 700mb. However, the relative
rerformance of UM, PM and CT seem unaffected.

Table 1 gives the important characteristics of each of the data
sets used, notably the generally high variances of MIDLAT and low
variances of LOWLAT. Also note the freedom of most sets from
significant numbers of inversions in the retrieved T(p) profiles.
Figures 10 and 11 show the variances of T(U).and T(p) as a function of
U level and pressure respectively. They serve to illustrate the high
variance of MIDLAT (and to some extent HILAT) compared to other sets.
The residual errors in predicting the temperature profiles are plotted
in figure 12, and show that MIDLAT's errors are not as proportionately
high as its variance.

Figures 13 to 16 show the FUVs in U(p) associated with the three
methods, for LOWLAT, MIDLAT, HILAT and AMALG data (JUN results
differed only marginally from SEPT and are not presented.) An overall
conclusion that c¢can be drawn is that there is a distinct gain (of
between 0.1 and 0.2 units of FUV) , generally, for pressures lower
than 700mb with UM. Most sets show equal FUVs below this level down
to 950mb or so and a bad performance by UM at 1000mb. U(1000) is of
course the Total Precipitable Water content. The exception to this
pattern is the MIDLAT set which shows distinct improvement right down
to 950mb. This difference is due partly to a better UM performance
and partly to a worse PM performance.

The MIDLAT data could be expected to favour UM because of its . high
water vapour variance which serves to exaggerate the non-linearity of
PM. LOWLAT apparently has high variance U(p) (Table 1) but not if due
regard 1is taken of its mean vapour content. With the set named AMALG
consisting of 480 profiles, 40 selected randomly from each of the 12
monthly sets, in an attempt to simulate the MIDLAT set) the mean
vapour contents were comparable to MIDLAT, but variances are well down
and the FUVs fell into the pattern of the other sets.



Page 12

The CT method produced results that are reasonably easy to
interporet. Generally CT improves (relative to other methods) towards
the surface layers consistent with the 1loss of sensitivity of the
radiances to water vapour in this region. This shows that PM and UM
rely substantially on correlations with temperature at this level and
so the performances of the three routes should be egual. However, .
both LOWLAT and AMALG depart from this rule in having 1large CT FUVs
near the surface.

FUVs for mixinag ratio with MIDLAT and SEPT are shown in figures 17
and 18 (the UM C(p) being the regressed version). They can be seen to
be aenerally hicher than FUV of U7p) values, this being expected for a
derivative aquantity. Figure 17 also shows the dew point errors
associated with CTp) retrieval in MIDLAT derived from the mean
temperature profile and RE of Clp).

L




6.2 FURTHER TREATMENT OF SURFACE PROBLEM

It was desirable at this stace to establish whether or not UM
verformance in low layvers was beina limited bv a small groum of ‘bad’
retrievals. In pvarticular it would be interesting to see which tvoes
of retrieval. if anv. were givina high 1000mb errors. Retrievals are
thus split according to the tvepe of intervolation recauired and

; Sevarate error statistics compiled for each.

The five categories used were:

=« 1. No Isothermal (in T?U))

2. False Isothermal T(1000mb)>>T(IS0), by >0.5K
3. True Isothermal &(1000mb)>f(ISO), but bv <0.5K
4. Isothermal Irrelevent %(lOOOmb)(f(ISO). but bv (1.5K
5. Isothermal Irr. large DT %(lOOOmb)((f(ISO). bv»)l.SK

The onlv chanae in intervolation vrocedure from that described in the
previous sections was to ignore the isothermal in 2 and extrapolate.

Catecorv 1 needed no change - in intervolation procedure and
generallvy produced vresults tvepical of the overall statistics.
i.e. PM = UM below 700mb.

- Categorv 2 was treated initiallv as. : e
7
TISo .—,l/
> 2 e A
T A P
E /'m <
/ / “
fRessupe " oueRRORDEN
and the result was large surface biases. S0 the extravolation
was changed to. : _ ) ,

Ll

v .
~ o~ Q’V
5 / gl “%

/
Pesssvle [ OVERRULDEN

‘——‘—;~

This improved the biases but this group still cave the worst
UM-PM comparison.

2 Cateagory 3 agave, initially, 1larae surface biases which were
removed by avbitrarily changinag the U level to which U(1000nmb)
is tied. If level i was found to be the start of the isothermal

- then U(1000) = U(i-2). This is tantamount to chanainag the DTs

in the isothermal detection but does not affect the other tvpes

of retrieval. ‘True isothermals’ do not do pvarticularlv well in

UM.

Cateaory 4 was a straightforward case with no end vproblems and

<Paée.13
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gave (at 1least with NESS sets) good results at pressures less
than 950mb. Again the surface error was large, and this is
evidence that this consistent feature is of more fundamental
origin than simply incorrect treatment of the isothermal.

Category 5 gave much lower errors with UM even in the surface

layers. As the constraint was tightened, i.e. the T(p) vector
further divorced from the isothermal, results were better though
numbers of retrievals in the category became minimal.

Examination of individual retrievals revealed that they were
almost invariably very low vapour/low temperature cases and thus
reveal the inadequacies of PM (or superiority of UM) in dealina
with extreme situations. PM. attempting to keep a linear
relation between water vapour and brightness temperature,
freaquently produces negative mixing ratios in these cases.

Table 2 shows REs and FUVs for the five groups on SEPT and MIDLAT
data. T

A final check on whether some small number of ’'bad’ retrievals were
present was a count of the freaquency of r.e UM > r.e PM and vice

versa, for the 850mb level where FUVs were generally equal (’'r.e’
indicates residual error on a sinale profile). Should these counts be
approximately the same (ie. about half the total) then the

distribution of errors would be the same for both retrieval methods.
It can be seen that, for the cases where the overall 850mb FUVs are
similar, this is indeed the case (Table 3),

With the changes described above overall errors statistics were
improved only marginally and this suagests that the near-surface
problem cannot be alleviated by any improved interpolation scheme.
The fault more probably 1lies in the insensitivity of infra-red
radiances to water vapour in these layvers and in the amplification of
errors inherent in the method of extraction of W. The largest
improvement was for AMALG and the effect is shown on figure lé6. At
the other extreme, MIDLAT was barely affected.

L



6.3 NOISE LEVELS

Three runs were compared usinag SEPT and MIDLAT data to examine the
effect of assumed and actual noise levels on the error statistics.

(A) Ordinary run : assumed noise (in rearession) = actual noise
(in forward run) = 0.4-0.8K (depending on channel).

(B) Low Noise run : as (A) with noise levels 0.1K in all channels

<C) Mismatched Noise : assumed noise = 0.1lK . actual noise

i = 0.4-0.8K

Comparing the results of (B) and (C) wth (A):

(B) Low noise levels had almost the same effect on both methods and
between both sets of data (see fiqures 19 and 20) In the MIDLAT
set the FUUs were down between .04 and .06 and for SEPT between

.05 and .07. There were slioght indications of a areater
improvement. in UM thouah orobably not sionificant (eaq. FUVs
varv bv « 0.02-0.04 as a conseauence of chanaginag the noise
seed.)

(C) Susceptibility to mismatched noise was different between the sets
(see fiqures 21 and 22). In MIDLAT. PM suffered onlv maraginallv

losina about .01 FUV throuahout. The effect on UM was erratic
but between .06 and .10. In SEPT, PM suffered more. losina .08
to .03 from 1000mb to 300mb, while UM lost anvthina between N o
and .01, the latter figure around 780mb.

This exercise shows that UM is probably more susceptible to
incorrect assumed noise despite ,eigenvector regression and despite
Eorrelation of retrieval errors in T(U) and T(p). From (B) it 1is
clear that UM is not goina to further improve its performance relative
to PM with lower brightness temperature noise.



7. CONCLUSIONS

Rosenkranz et al in their initial test of the algorithm found verv
encouraging results with the UM algorithm. They made use of the 183
GHz water vapour channels (microwave) to estimate T(U) and 55 GHz

oxvaen band for T(p). The statistics thev used were much more
localised than anv of the sets used in this studv and consisted of far
fewer soundings. Mean surface overburdens were about 58 Ka/m* and

variances. thouah not oacuoted, were praobablv 1low considering the
jatitude and the number of soundings used. In terms of the results of
this studv thev should not have done so well and the fact that they
did probably reflects on the use of five microwave channels.

For water vapour soundina in the uvpver trovosphere, the new
algorithm. wusing HIRS channels. offers a sianificant increase in
accuracy of retrieval. In the near surface lavers the simpler and
more stable aporoach appears to be . PM althouaoh for soundings
identified as being excessively ‘drv’ UM would be useful (UM does not
gain at the ‘wet’ end due to the inaccuracies of extrapolation).

Further research with the algorithm as it stands could examine more
categories of retrieval, as in the last section. For example, cases
differentiated by degree of saturation. or types of temperature
gradient present, may determine that it is advantaageous to do the
humldltv retrieval one way or another. However the general impression
gained from these studies is that there is a fundamental limitation on
humldltv retrieval using TOVS below 700mb and that anv improvements
will be minor and/or limited to a low percentage of retrievals. It
was suagested earlier that the surface problem may well be due, at
least in wpart. to a lack of information on water vapour in infra-red
radiances. This information could be realised in the form of a «aood
surface temperature estimate (e.q. from AVHRR (Advanced Verv Hiagh
Resolution Radiometer)) and a reasonablv accurate Total Precipitable
Water estimate ( U(1000 mb) ) from a ‘Split Window’. ©Such estimates
would be used to constrain the retrieved temperature ovrofiles and
would hormefully lead to more accurate retrievals.

The onset of microwave humiditv sounders in the near future offers
the best hope of substantial improvements in near surface water vapour
retrieval (over the oceans at least). This is because the lack of
contrast between surface brightness temperaturée and the low laver air
temperature suffered by infra-red sounders is alleviated in the
microwave region by surface emissivities significantly 1less than
unity. :

Pace 16
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APPENDIX A
LINEAR AND LOGARITHMIC INTEGRATION AND DIFFERENTIATION

1. Linear SAu = /.M’f ':!i c(p+ ap) + c.\p)]‘}‘?

4
= '/z[ elprae) + C(p)] B Ry e A.1l
2. Logarithmic
Assuming an exponential form of C(p): c = e ft
PrAp Peip
g Au--/ kel oo - ‘“[5—4‘,}9
3 a o *

- gl )]

Now clp) = bLe.N, and c(p-rAg):xeMHA?) so that C(P*A‘P)/C@: Q(‘Ae

ok A= ' L°3¢{ clprap) [ etp)]

Therefore :

. A [ cp+ap) — C(')]/SL%‘X. canp)! c(p)] ......... A.2

We have actually used the mean mixinag ratio with respect.. to Loa(p)
i.e.;

(3]

= Exp[ i Lﬂger(C(P*AP)) +Lo5.\c;(p))'()v = ,I c(p+ap). e(p)
and. Ao 'Eﬁp/g ........ iR.3

A.3 agives results differinag only slightly from A.2. Considering

the somewhat arbitary assignment of exponential form to C(p) this is
acceptable.

Using the same assumptions, differentiating:,U(p). for C(p) gives,

Lin: Clpd = UlMsUIR)l ¢ malu . A.la
Ap Ap

. Log: Cip) = UB)A Losgi()(ﬁaa ....... A.2a
AP ulp)

or C((M')= (U(pmp\- Utr))z ....... A.3a

c(p) Ap?
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AePendix B.

RESIDUAL ERRORS IN REGRESSION

If the predicted value of a variable Yy is 13 then the residual error is defined
as: i

e = 4-§

For many observations the mean of such residuals will tend to zero (identically
zero for least squares regression) and so the rms value is used:

R i Z ( j_{j‘)z o) N = no. obs.

1}

| Ty + 2269 - 2T G- Ply-3)

L

foomoao s = Tl

-

{ u ¥ . . (R
. i 2b 7 ty-5)x-3)

Since (Q-g) .-= 5(2—;&)

If least squares regression is used, e Al (3~§>(x-'§ _________ @
T 2
So that the 3rd term above becomes,
- 2b? Z (2 -5)2
= =2 L0
or therefore : .
' Bt = + { Ty = T (G-I = ®

premma——

Combining (D and (3) @

5% a2 ~ =\2
2. (4-3) T (y-3) + 1T 16-5)
Sum of squares of actual Se Sq. of actual about + S, Sq of regression
about mean regression about mean
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That is, the variance of actual values about the mean can be 'explained' by
the variance of actual values about predicted values, and that of predicted
values about the mean.

~\ %
For an accurate regression equation Z (‘j“j) is small,

Alternative formula for sum of squares?:

Of regression about mean: i (§- g)l - b { Zl' 2y - (Z’x)(fs)/&g
4
2 . ’
0 : : e - ] -
f actual about mean o i ((,3 3> = 2:' (_37 " (2‘3)/,\’
Of actual about regression Z (tﬁ-%\l by subtraction
If the regression relation is multivaxiate, ie, = ba+bxi+ . baxa

an analysis of variance can show which of the A are important in explaning Y
and therefore which are worth retaining in the regression relation.

M i jate Ssi
If we have My predictants, 4,» Ya ------ Yay and N5 predictors, %,
Ry Apy where 3‘« = Y- etc, then the regression relation is best

expressed as,

Yo L Hy e ®

N

(l.q X k)- ='.(ij'xﬂ.x)(l\hx k)

-

3; e—, X being matrices of the dimensions shown, K is the number of observations.

: -1
The result of least squares regression is that C = ':\"T Ol Sl ©

And the residual errors are now given by,
5% ” 7
Bt s il (‘1-‘13(*1—_3)
N

2
since diagonal elements of the resulting matrix are v 7; (‘ji- 3"\ R
N

Off diagonal elements give information on the correlation between residuals in
different variables;

R.E".}- s .é Z'.(g;-‘sz)(‘j;-"j;) v

So the residual error matrix is;

b

(4-3) 4™~ §)

P R
R o .

™

{ oyym- 5y - 4y + S‘Zri

7

And substituting ?3 w 20
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gl LA Al 3 Cz.(Ca.T
Ze Lf gyt - cxy - y4lex) + ey

{ 4 - e - gy ] ©

N

[ (A8)T = 'ETAY]
Taking the second term of @,’

SX‘T (xx*)-‘xa-r

Cx«j-r
yx™ ( yxT ( (xa™)™)T )T

~1 -
and being symmetric, (Xx") = ((zx7) ')T.

-
A g (yxT xx™?) = ¢xX"C

So that (§) becomes;

Le

1§ 4 = 247CT 4 Can™CT

The last term C.xnTET

tjx.-r. ™) xam T

W

tjx"' o4 e . tijC,T

Therefore, finally:

¢ - -r':)f ‘ﬁT- (joch e

Ejgenvector treatment of the regression equation gives,
y = 7
C. = :ju."' 2t T ar Lax)ar ) 28

where X' is a matrix of some or all of the eigenvectors of matrix Z (the
matrix of predictors). '

Substitution of this € matrix into @ gives 2gain equa.tion@ for the residual
error matrix.

In analogy to analysis of variance above, an analysis of the eigenvalues gives
the relative importance of corresponding eigenvectors in the regression relation.
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o*lw — Variance of T(U)  (for U;= 24) (K*)
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Variance of T(p)

(for p. = 1000mb)
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TABLE 2.

CATEGORIZED ERROR STATISTICS ON U(o)

A) SEPTEMBER DATA

" CATEGORY 1

-« P(mb) :

100
200
300
400
500
620
700
780
850
920
950
1000

CATEGORY 2 (False Isothermal)

RE/U:

.018
+041
.041
.120
w Sl
.665
. 086
. 748
.457
.303
.451
. D96

loN o]

PWWN PO CO

RE/P:

.004
4022
.054
.169
L4002
.784
+ 132
. 739
. 398
;405
401
.891

WWWNFHODOCOD OO

obhHOOOC O

2]

(No Isothermal)
VAR :

.00
.00
.00
« 09
s S
.94
« LV
.42
14,
« 853
29
32.

13

17
47

*P(mb):

100
s ~.200
300
400
500
620
700
780
850
920
950
1000

RE/U:

.028
02D
.036
. 085
.186
.406
.784
.436
.132
gL
.160
« 320

BWUNNDHFOOOOOOO

RE/P:

. 005
021
.039
103
222
.449
. 198
.384
.038
- 699
+981
.484

WNNNHFHOOOOO OO

AN OOO OO

VAR :

.00
.00
.00
.03
.20
. 06
« 76
.10
.34
v A0
03
in

CATEGORY 3 (True Isothermal)

P(mb):

100
200
300
400
500
620
700
780
850
920
950
1000

RE/U:

0.057
0.045
0.053
0.057
0.125
0.201
0.432
0.773
1.473
2.621
2.930
4.541

RE/P:

.006
.017
.034
.070
a2l

NNHOOOOOO OO
U1 O 0D
= o o
NP NOWY

3.004

VAR:

0.
0.
0.
0.
0.
0.

0

1,

4,
10
14,
23,

00
00
00
01
08
34
76
96
Vi
65
58
68

no. profiles

FUv/U:

99.900
. 095
.418
.278
.270
: 228
. 283
.363
L4726
507
.473
.650

OOCODOOOODTHW

FUV/P:

99.900
.224
.743
.554
L4272
o
.308
+359
.406
.448
.460
.466

OCOO0ODOOOOOO W

no. vrrofiles =

FUV/U:

99.900
. 752
1S
.248
.171
+156
5223
i 338
.440
.476
.499
.649

OO0 OoO0O0ODOoOOOH WD

FUV/P«

99.900
.218
.614
w373
.245
.190
»231
.314
.4072
.447
.444
422

OO OOOOODOOH

no. profiles =

ruv/U:

99900
8.888
1.647
0.280
0.201
0.120
0.244
0.305
0.454
0.645
0.589
0.871

FUV/P:

99.900
11226
0.660
0.428
0.629
0.601
00529
0.420
0.441
0.460
0.435
0.381

116

BIAS/U:

0.
=,

-0
-0

0

198
BIAS/U:

0.
-0.
-0.
=0.
=05

-0
0

=

23

BIAS/U:

0

-0
-0
0

=1

006
013

.004
.003
-0,
=0l

V.47

047

o LG
=0 s
“Q .
=1 .
-0,
0.

038
747
358
714
186

015
016
011
010
043

+037
.109

0.
-0.
=0.
-0

173
0e8
386
034

. 060

+030 .
=0
=0
0.
.008
.010
. 046
=0,
=0
g
! P

004
030
004

198
738
302
%7

+691

RE = residual error
VAR = variance (U(p))
FUV = fractional
unexnlained var
BIAS = bias of UTp) from
true U(n)
/U = UM
/P = PM

i et - i Y PP e e ——— S



CATEGORY 4 (Isothermal Irrelevant) no. profiles = 54

P(mb): RE/U: RE/P: VAR: FUOV/U: FUV/P: DBIAS/U:

100 0.050 0.005 0.00 99
200 0.046 0.022 0.00 6
300 0.063 0.040 0.00 2
400 0.075 0.098 0.01 0
500 D.130 G188 0.04 0
620 6.169 0.385 0.19 0
700 0.426 0.638 0.83 0
780 0.810 0.880 1.10 0
850 1.124 1.141 2.:.25 0
920 1.800 1.584 5.41 0
950 2.161 1.829 8.07 0
1000 3.830 2.333 “-15.06 0

CATEGORY S (Isothermal Irrelevantﬁ
no.

.900 99.900 0.029
.893  1.579 0.000
.856 1.154 -0.042
.550 0.950 -0.012
.284 0.886 -0.006
.153 0.790 0.028
.342 0.769 0.048
.597 0.705 0.044
.561 0.578 -0.087
.599 0.463 -0.284
.579  0.415 -0.065
.974  0.361 1.507

large T(1000)-T(IS0))
profiles = 6

P(mb): RE/U: RE/P: VAR: FUV/U: FUV/P: BIAS/U:

100 0.073 .0.003 0.00 99
200 0.049 0.005 0.00 106.
300 0.035 0.010 0.00 6
400 0.052 0.042 0.00 2
500 0.100 0.149 0.01 0
620 0.162 0.463 0.09 0
700 03155 ":0,877 0.24 0
780 0.423 15,491 0.57 0
850 0.849 2.067 118 0
920 0.882 2.676 1.92 0
950 0.729 2:976 2.19 0
1000 0.943 3.582 2.44 0

B) MIDLAT DATA

.900 99.900 0.0472
155 1.226 0.013
. B ) 0.520 -0.030
.076 1.328 0.042
.888 1,997 0.081
.308 2.517 .0G:1l4
+101 3:237 .. 0:0%9
312 3.876 -0.347
.609 3.609 -0.762
.405 3:723 =05705
. 247 4.122. -0.450
. 364 50252 Q700

CATEGORY 1 (No Isothermal) no. bfofiles 220157

P(mb): - RE/U: RE/P: VAR: FUV/U: FUV/P:  BIAS/U:

100 0.004 0.001 0

200 0.008 0.008 0.00 1.
300 0.026 0.030 0.00 0.
400 0.066 0.145 0.05 0.
500 0.196 0.382 0.54 0.
620 0.516 0.880 3.34 0.
700 1.060 1.483 8.49 0.
780 1.662 2.160 17.63 0.
850 Aoadd 2 TS) 29.87 0.
920 3.002 3.550 48.97 0.
950 3.827 3,975 60.16 0.
1000 6.240 4.883 84.98 0.

L0009

900  99.900 0,001 .

162 1.242 -0.003
428 0.592 -0.002
086 0.417 -0.002
071 0.270 0.024 .
080 0.232 ~0.01717
132 0.259. -0.085
157 0.265 -0.403
$ 4, 0.25%3 ~0.818

184 0.257 -0.480
243 0.263 -0.061
458 0.28%1 31008




CATEGORY 2

(False Isothermal)

P(mb): RE/U: RE/P: VAR :
5 100 0.002 0.001 0.00
200 0.004 0.005 0.00
300 0.018 0.019 0.00
. 400 0.045 0.069 0.01
500 0.154 0.177 0.13
620 0.272 0.287 0.73
700 0.555 0.648 2+03
780 1.183 1.298 5.18
850 2.204 2.088 10.84
920 3.330 3.040 20.59
950 4,229 3.478 26.27
1000 5.955 4,297 38.48
CATEGORY 3 (True Isothermal)

P(mb): RE/U: RE/P: VAR:
100 0.004 0.001 0.00
200 0.006 0.007 0.00
. 300 0.025 0.026 0.00
400 0.053 0.083 0.01
500 0.108 0.183 0.07
. 620 0.214 0.350 0.28
700 0537 0543 0.77
780 0.791 0.947 177
850 15630 4.1 581 359
920 2,167 .2,415 AR
950 2037 :2:806 10.94
1000 4,245 3,565 19.29

no. profiles =

FUv/U:

99.900
« 719
+» 218
.165
.183
+ 101
« 104
270
.448
AP
.681
D42

OCO0OODDOO0COO0O

99.
211
«+631
. 387
.243

COOCDOOCOOOOH

FUV/P:

900

.113
. 207
o ¥4
.4072
.449

.461

.480

no. profiles =

FUV/U:

99,900
. 926
.732
.234
+169
.163
.374
« 353
.748
.605
.684
.934

ololololoNeNoNoloRe o)

CATEGORY 4 (Isothermal Irrelevant) no.

P(mb) :

100
200
300
400
. 500
620
700
. 780
850
920
950
1000

RE/U:

0.005
0.004
0.015
0.031
0.083
0.161
0.423
0.785
1.274
2.060
2>561
4.054

RE/P:

0.001
0.004
0.01e
0.069
0.222
0.518
0.840
1293
1.828
2.497
2.803
3,362

VAR:

0.00
0.00
0.00
0.00
0.03
0.25
0.89
2.47
95.10
9,71
12.99
19.25

FUV/U:

99.900
1.424
1.356
0.432
0.214
0.104
0.201
0.250
0.318
0.437
0.521
0.853

FUV/P:

O
eNeololoNoNeoNoNoNoNol ]

.900
.144
.781
.568
.489
.436
.382
.507
<403
o Bk
e i 5
» B899

49

BIAS/U:

0.001
-0.002
-0.004
-0.009
-0.041
=0.135
A28
« 25
+ 799
. 597
.658
+ 361

29

BIAS/U:

0.001
-0.002
-0.009
-0.025
-0.015

0.008

0.187

0.195

0.640

0.619

0.834

0.753

profiles = 80

FUV/P:

()
OCQO0OOOCO+HFNHEFY

.900
%4 83
.524
v D9
930
.076
v 93
.678
.656
.642
.624
.587

BIAS/U:

0.002
-0.001
-0.005
-0.001
-0.005

-0.061

-0.004
-0.055
0.104
-0.129
-0,107
0.837

e O e



CATEGORY 5 (Isothermal Irrelevant:

——— . S———

P(mb):

100
200
300
400
500
620
700
780
850
920
950
1000

RE/U:

WNHOOOOOOOOO

.004
.003
U1l
.018
.040
+101
+ 219
.447
.863
853
«330
«205

RE/P:

PLWUWNHFOOOOOO

.001
.003
.017
.089
. 266
« 531
.022
DI
« 309
.164
+ 542
. 209

e e, 0 i ot e g

VAR:

0.00
0.00
0.00
0.00
0.02
0.13
0.40
1.15
2.80
2. 91
7.69
11.45

larage T(1000)-T(IS0))
25

no. orofiles =

FUV/U: TUV/P:
99.900 99.900
1.973 2+ 085
1.269 3.176
0.313 7.603
0.097 4.174
0.078 3:075
0.120 2.607
0.174 2.203
0.266 1.902
0.581 1.694
0.706 1.630
0.897 1.548

BIAS/U:

.001
. 001
.005
.004
.001
«»033
.016
o by
.491
.216
.496
«B53

C)

« v




—]_i\%L& ¥ <o wb  Ereok  ComPaliseon)

Fv (i No. of ELLoRS
i UM €0 € | Ewe S i
LOWLAT Ry ! 199 202 !
MibLAT 208 136 205 130
Ruar . 228 223 IS? 122
Seer 191 204 9y Lo4
AMALL, Qg %o 293 Ak

No. € ” €um

indicates the frequency with which an ind=-
ividual retrieval error obtained with PM
was greater than that obtained with UM,
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