TURBULENCE AND DIFFUSION NOTES NO 17

A COMPARISON OF THE CONFLICTING WIND-STRESS RELATIONSEIPS

FORMULATED BY LETTAU AND BY SWINBANK ON THE BASIS OF THE

LEIPZIG WIND PROFILE

by

D J CARSON and F B SMITH

Boundary Layer Research
Met O 14

Meteorological Office HQ
Bracknell

August 1971
Note: As this paper has not been published, permission to

quote from it should be obtained from the Head of the
above Branch of the Meteorological Office.




(w

TABLE OF NOTATION

A(z) scalar austausch coefficient, o K

A i=1, 2, 3. Particular representations of the austausch
coefficient A(3)

B(z) Used as a scalar coefficient in the statement of Swinbank's
hypothesis, T (z) = B(z) V (2)

§ Coriolis parameter, £ = 1.14 x 10t s et Leipzig

g acceleration due to gravity, g = 980.665 cm sec™ at Leipzig
the height of the boundary layer defined so that,

w—> Vg V——>0, {, —>0, T, ——>0as 2 — h

H used as a depth over which the errors € and E; are applicable,
k unit vector along the z - axis

K(z) diffusivity for momentum, A = o K

L (1) used as a temperature lapse rate

(1) as a subscript it refers to the Leipzig Wind Profile (LWP)

b pressure
R gas constant for dry air
N Pl eu &z
R,(z) § Jx ev dz
°

s IY- Ve
T(2) temperature, °K
u wind velocity component in the direction of the geostrophic wind
v wind velocity component perpendicular to k and the geostrophic wind,
¥ wind vector in the horizontal plane ‘
v v
Ve 1 (kxVp) , the geostrophic wind vector,

ef
Vg 1Ve] =1 ll‘t

e4
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z height above ground

0 surface roughness length
2y height where v has a local maximum value
z, height where u has a local maximum value
z* height gt which v = 0, u £ 0.
o (z) angle between the wind vector and the geostrophic wind
P(ZJ angle between the vertical gradient of the wind, %i! , and
the geostrophic wind
) deviafion of the wind from its direction as determined by the
LWP, § = &« = o,
A - 20 T tan (x-8)
£X3
€. £ (0-H) = {l JH(P°9)2 dz}%
H
0
& £ (0-H) = {L J‘H (a-8)2 dz}%
H
o
% | depth below the top of the boundary layer, strictly
WA= h-3z; this is sometimes equivalent to (z* - 3)
8(z) angle between the stress vector and the geostrophic wind
e air density
T the shearing stress
r Iz}
Tx component of shearing stress parallel to the geostrophic wind
Ty component of shearing stress perpendicular to k and the
geostrophic wind
- 2 R
: Lis) = l;gl J Sin dz , Swinbank's formula for the
Z
magnitude of the.ahearing stress,
|
v - tan "1 é-v g |
u- Vg

Note: Throughout this paper it will, in general, be convenient to express
angular measurements in terms of degrees, whereas in the

mathematical and computational formulae it is to be understood that

the angles are required in radian measure



: 18 Introduction

In the atmospheric boundary layer many basic questions remain unanswered
to any reasonable degree of satisfaction and, in particular, the variation of
the wind vector with height and its relation to the shearing stress have not
been resolved. One of the main difficiilties hee been the lack of good observational
data so essential for tackling such problems. As a result of this the careful
and detailed wind measurements made by Mildner on 20 October 1931 at Leipzig
have provided, until recently (see eg Clarke (1970)), the most reliable data
for well-monitored, steady conditions.
The Leipzig data was obtained from a series of twenty-eight double
theodolite pilot balloon ascents made during a seven-hour period (0915 - 1615 @MT),
the wind field was stated to be steady and uniform and the measured mean lapse rate
throughout the layer of 0.6500 per 100 m indicated that the air was slightly
stable. A full account of the observational study was given by Mildner (1932).
Further analyses of these data, by Lettau (1950) and by Swinbank (1970)
have led to the formulation of two conflicting hypotheses for the relationship
between the wind vector and the associated shearing stress throughout the
boundary layer. The hypotheses are:
(i) The stress vector is parallel to the vertical shear of the wind
vector (Lettau). This relationship is the classical, semi-empirical,
flux-gradient relationship which, although somewhat supported by physical
concepts, has never been adequately verified in the atmosphere. Indeed
Taylor (1963) has advanced theoretical reasons to indicate that the
assumption is probably not valid and he suggests that in our present state

of knowledge it camnnot be relied upon.
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(ii) The stress vector is parallel to the wind vector (Swinbank), This

hypothesis is based entirely on a study of the Leipzig data and at present

there is no theoretical justification to support it. Swinbank's formlation

has appeared in a section dealing with the determination of the flow field
near the top of the Ekman layer, in a study of the atmospheric boundary
layer by Plate (1971). It is clearly stated that Swinbank's assumption
remains questionable.

The situation we are faced with is that of having two conflicting hypotheses,
neither of which has been adequately verified in the atmosphere, both claiming
support from the same data. The present study is designed to provide an objective
assessment of the two theories and to decide which, if either, provides the more
consistent representation in relation to the Leipzig data. In order to provide
a complete study the procedure for each hypothesis will follow the pattern:

(i) Summery of the original analysis.

(ii) Criticism of the original analysis.

(iii) Reanalysis and objective assessment,

2., Lettau's Analysis of the Leipzig Data

Let us assume that we have a horizontally uniform, atmospheric boundary
layer under conditions of unaccelerated motion and in which we may ignore all
vertical velocity components. Horizontal homogeneity is assumed for all variables
except pressure which is assumed to have a constant horizontal gradient. Under
such conditions the general equation for the horizontal mean motion in the

atmospheric boundary layer reduces to

2T = - V-V X k
= fe ( 8 ~¢3 -
where, (1)

Ve e—';(’.‘.*vﬂ

I

defines the geostrophic wind vector at any height %.




Lettau adopts the classical mixing length concept of the flux-gradient

relationship ,

e e
i 22 (2)

where he defines A (= e K) as a scalar austausch coefficient, such that

(»

;. s > orranls > 0O,
He also assumes that the air density and the geostrophic wind are independent
of height, ie there is no thermal wind component between any two levels in the
boundary layer. Right-handed axes are chosen such that the x-direction is

parallel to Vg and so the component equations for the motion become,

¥EL oL (3)
. e
: e
T = ade (u-Vg), (4)
‘ - 4
i e Ve e - Lair niey H: : (5)

with the surface boundary conditions that,
(1) the stress vector ‘E(z) is non-zero and parallel to the limiting
direction of the wind vector V as 2 —>» O (strictly this should be as

z ——» 20, but we shall not wish to distinguish between the surface and
20 throughout this study).
(i) ¥(0) =0 end 0 < & (0) < /2 ,
vhere oc(®) = tan”! (Y/u)
and o (0) = 1im /tan 1 (Y/u)/.
z—>0
If the wind hodograph has the characteristics of the Ekman spiral, then
equation (2) implies the existence of two significant levels, 'z, and zz, such that
Ty = 0 and v has a local maximum value at 2 = 3}",

and Tx = 0 and u has a local maximum value at % = zé'o

Se

W



The above equations and boundary conditions yield, after integration,

Tx oy J P 6 R fej vdz = A P L (6)
° ?Z
; Ty = Tylo) + fej (\L—V‘\ dz = A | 1)
- * bk 4

and, in particular,

Tx(0) = fe/ v iz (8)
T, (0) = ~fe/° (u-Vg) dz. (9)

One of the principal shortcomings of the Leipzig data is the lack of
reliable measurements of the magnitude and the direction of the geostrophic
< wind. In order to obtain the best possible estimate of o (0) Lettau chooses
four different values, spread about a value estimated from a synoptic weather
map, end carries out the following procedure,
(i) The tentative value of & (0) and the Leipzig wind data yield
Uy Vy B, Boe
(ii) T, (0) is computed from equation (8) and ‘L’.‘ (0) is obtained from
the boundary condition,
Ty(0) = Tx(0) tan x(0),
(iii) Equation (9) gives a geostrophic wind walue

. V‘.=._L{

Zy
J wdz + Ty0)
zI

fe > (10)

(iv) The stress profiles, T, (%), T.‘(z‘) , are obtained from
equations (6) and (7).
All the computations are carried out for successive 50 m-levels with the

aid of graphical-numerical integrations. The scalar austausch theory implies
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A = l:-l,‘ = -E% for all values of z,
u v

where ' denotes differentiation with respect to z,

o
ie E = —=3% - E—’-,‘- = 0 for all values of z (11)
v u

Lettau appeals to the above result in order to choose his most suitable wvalue for
o« (0)., Height averages of E between 50 and 400 m are evaluated and the o¢ (0)
which corresponds to the minimum mean value is considered to give the best value.

This method leads Lettau to choose o (0) = 26,1° for which value equation
(10) gives Vg = 17.51 m sec'1, which is in very close agreement with Vg deduced
from Mildner's measured value of the pressure gradient, The corresponding wind
components,(uL, v, ), parallel to and perpendicular to the geostrophic wind
direction form Lettau's "representative" wind profile, This profile is given
from 50 = 950 m at 50 m intervals in Table 1 and is generally referred to in the
literature as the Leipzig Wind Profile (LWP). The wind and corresponding stress
hodographs are shown in Figures 1 and 4.

As a consequence of his method Lettau is able to evaluate A(z) from three
different relationships. The expressions are quoted here for completeness sake

and their full derivations are given by Lettau (1950).

z

A, = vnl“,[ef (V- VVp s ) dz, S

B s 7 %\ r (13)
and A, = (TOVgsimalo)- fefs‘ dﬂ/(fy) , (14)
where 5 = \\1 - \_{(\

and i&un ’V = ol |

wu-V
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The third of these expressions makes use of the fact that since Vg' = O then

T - Ax-%), (15)
and so the introduction of a thermal wind would invalidate A3. From the LWP
Lettau produces profiles of A1, A2 and A3 and a representative average of the
austausch distribution as an arithmetic average of those three. Certain of

these results are illustrated in Figure 6.

3. Criticism of Lettau's Analysis

Lettau's hypothesis and assumptions are quite straightforward and have the
distinct advantage of not requiring any assumptions at the "top" of the boundary

layer (at such a top we might expect “"—"Vg' , V—>0 Tx= ’C’ )
However, the application of his methods requires certain refinements.
(a) A criticism raised against Lettau's theory by Swinbank is his
assumption that the atmosphere was essentially barotropic throughout
the period which resulted in the LWP, If instead we assume that the
horizontal pressure gradient is constant throughout the layer, as stated
by Mildner, we can use the measured, slightly stable, constant lapse rate
of O.65°C per 100 m and an estimate of the surface temperature, ™0), to
give a density profile through the layer. From the definition of !k
it is noted that the geostrophic wind will now increase in magnitude
throughout the layer but will remain constant in direction such that,

e V¢ = e Vg (o)

Swinbank suggests from his profiles s geostrophic wind increase from
17.5 m sec™ ' at the surface to 19.1 m sec” ' at 950 m and this implies the

density stratification of Table 1, given by
- (v+ %/rL)
B

E e ey o0 ) (17)

Be




i L e biEs %/ 100 m e 6,52 WP 1% e
g = 980,665 cm sec-Q,
6 o1 -1
Riie SoUBT %407 ergipm - (deg K)T Ty
e(o) = 162Hx 10-3 £gm cm-3,
5 and T(0) £ 291.5 9K

With these values equation (17) reduces to
e - p(0) (1-2.23x 1075 )4+256 (18)
where z is in metres.

This thermal wind effect will be included in the reanalysis using
Lettau's hypothesis, the choice of axes remains the same but the density
variation with height must now be allowed for in all equations. In
particular equation (15) will no longer be true and A3 as defined in
equation (14) will no longer give an estimate of A(z).

. (b) Lettau points out that the relation for A1 is quite sensitive to
small changes in the direction assumed for y& and that y% is not
determined accurately enough from the synoptic charts. The method applied
to obtain the best value of o (0) to fit the theory appears to be rather
too crude to do it justice, in particular;

(i) Too few values of oo(0Q) were considered.

(ii) E is not the best parameter for indicating the error in

assuming the parallelism between ‘E and \_/' . This parameter is

& particularly difficult to evaluate in the immediate neighbourhoods

of 2, and 22 where v’ and u’' , respectively, tend to zero.

1
(iii) The averaging process was applied over 50 - 400 m which is
only half the range for %, however the profiles finally adopted are
given up to 950 m.

4 method based on evaluating the root-mean-square angular deviation

between T and y' for a given «(0) will be employed in the reanalysis

which follows,




(¢) Lettau's method of deteriming z, and Z, is rather inaccurate so that
the expected, almost linear, increase of z4 and z, as «(0) is increased
is not evident in his tabulated values., We can obtain Z4y Z, @S continuous

functions of & (0) from the LWP where O(._(O) - 26,1°,

'
If at height z in the LWP e _ -tan §

du,

and at height z T NG " S

dv,

)

then when the axes are rotated such that e

\)

Xy + B s We have

for the new coordinates (u, v),

AV =O at z =132
p'e

and 2u
AV

1 1"

i.e.2 ,2 arez,, 2z, respectively for the profile with & (0)= X, (0)+5.

By measuring § in the neighbourhood of sl A we can find

2,y 2, as continuous functions of & (0) . See Figure 2 and Table 2,

4. Re-analysis Based on Lettau's Hypothesis

The main changes introduced are the thermal wind effect suggested by
Swinbank and a general refinement of the averaging technique for determining
the best o¢(0) which fits the theory. The basic data are the LWP, (w, V. ),
and the density profile e (z) of Table 1, The reanalysis is carried out for
twelve values of «(0) in the range 22,7° £ x(0) € 29,0°., If we write
i o(0) = o, (0)+$ where o€ (0) = 0.4555 radians (26.1 degrees) then the
values for o (0) are obtained by taking § = -0.06 (0,01) 0,05 radians.
Profiles corresponding to each o« (0) are obtained from the LWP components such that
©“ = U cos§ - Vv, sin§ (19)

VvV = W, sin§ + V. cos§ | (20)

with similar expressions for  w' 6 V',




We define

z

R. @)= )Cjeu. dz

Ru_(l) C—OSS 5 Rlu(z) sin S g
(21)

Rotz) = fj eV Az =Rty sh # R Bheods | (22)

where R, (2) )R.‘_L(Z) are obtained from the LWP by graphical integration, the
values being given in Table 1., In order to increase the number of steps available
for numerical integration the LWP was interpolated to give values at 25 m

intervals,

Direct measurement of the gradients gives u’L_ X v‘_' implying th tn;" (VJ')
which was compared with P,_:tu:‘(%h\ measured from the wind hodogravph. 7
For each o (Q) in the specified range the following procedure is followed.
(i) Knowing & , the Leipzig data yields the profiles «,v, w' vt v=lVl,

Z,, 2, are obtained from Figure 2 and R“_(l-‘) | R“(Za) , Where i = 1, 2,
from interpolation of the values in Table 1.
(11) Tu(0) = R,(z,) = R, (2)sin8 + R, (2,) cos$ (23)
T (0) = T (0) tan o« (0) (24)
Teo) = |tia)

(iii) The pressure gradient is obtained from equations (5) and (9),

2] -4 (50 ¢ A@)

=l (_C%CO) + R}LCZ|) COSS ., R;L (ZI) sin S) %
zl

and the variation of the geostrophic wind speed with height from the
definition,

om \}k. ;

&5 1Y (26)

(iv) Knowing the pressure gradient we now evaluate the stress components

at 25 m intervals, from

T (2) = Tel0) — Ru(z), (27)
Ty (=) = Ty(0) —/%:}z + R, (z) . (28)
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(v) The austausch coefficient A(z) is estimated by means of the
expression for AQ,
Ay = e/ (29)
and we note that IY'I is never zero,
(vi) The angle, P , between the wind gradient vector and the geostrophic
wind direction is evaluated from :

o= ot () (30)
and the angle, © , between the stress vector and the geostrophic wind
direction is evaluated from

6 = t»&'('%_) ’ (31)

care being taken to record the correct quadrants in which P and 0 lie,

(vii) The root-mean-square angular deviation

H la
/ 2
Erfo-H) = 4| (g-0)"da} (32)

H o
is evaluated numerically, where the meaning process is carried out over a
range O - H, In our particular study this process is carried out over two
ranges for which H = 400 m and 800 m respectively. The resulting r.m.s.
errors, &, , are tabulated for the range of o« (0), see Table 2, and
are plotted against o (0)in Figure 3.

Results from the Lettau Reanalysis

The value of o (0) which best suits Lettau's hypothesis that the stress vector

is parallel to the vertical shear of the wind vector is defined to be that which

corresponds to the minimum value of the computed €, . Figure 3 indicates that

when averaged over the range O - 800 m the error, €, , has a well-defined

ninimum at ol (0) = 25.00, its value being approximately 2°, When the error is

evaluated over the range O - 400 m the minimum value drops to about 1.40, however

the turning point is not quite so well defined and could reasonably be accepted

anywhere in the range 24.5o to 27.50.




In general, then, the anguler deviation between the stress and the wind
shear incresses with height and the theory fits best nearer to the surface,
If we wish to apply the hypothesis to the whole depth of the boundary layer we
should consider 8L(O - 800 m) and from this we conclude that the wind rrofile
with o (o) = 25.0° provides the best overall fit to Lettau's hypothesis, The
wind and stress components for o (0) = 25.0o are listed in Table 1, and in
Figures 4 and 5 we compare shearing stresses obtained on the basis of Lettau's
hypothesis with the thermal wind effect included against those derived by Lettau
for the LWP. It is interesting to note the effect that the assumed density
stratification has on the stress values neer the "top" of the layer. (End values
for all but the LWP stress hodograph are for heights expected to be near to the top
of the boundary layer. The derivetion of these heights will be discussed later.)

With the thermal wind effect included we see that for &k(0) = 26.10
the stress values near the top do not tend to a small value as rapidly as
suggested by Lettau's stresses for the LWP, however for «(0) = 25.00, where
£ (0 - 800 m) =~ 20, we recover this rate of decay. Ve can reasonably expect
the magnitude of the stress near the top to be small, certainly much less than

(0) . In the cases illustrated we find:

!
For the LWP, o (0) = 26.1°, Vg = o, ﬂ%gg—“ﬂ- i Do
for, o (0) = 26.1°, V" # 0, :‘L_ 18 B YRFS 0.183

/
for, o (0) = 25.0% Vg £ 0, %{—87121‘1 ~ 0.04,

If we enforce the restriction that Tz (h) /7-'(0) _é O.i, where h
denotes the top of the Ekman layer, them we see that this criterion is met for
x (0) = 25,0°%
Figure 6 illustrates austausch distributicns obtained from the reanalysis and
compares them with Lettau's representative average distribution for the LWP and

his distribution A2(z based on equation (13) (or equation (29)). For «(0) = 26,1°

15




the shape for the reanalysis A(z) above 450 m differs markedly from Lettau's

distributions although for o (0) = 25.0° the shape is closer to the original,
The new A(z) profile is given in Table 1.

In view of the likely errors arising from the computations we can accept
our best fit profiles as giving a good representation of the boundary layer
profiles which is consistent with Lettau's hypothesis, the physics of the
situstion, and the observations. The profiles with o¢(0) = 25,0° exhibit the
following characteristics:

2,1% € (0 - 400 %) w1573

4,69 dyne cm'2;

€ (0 - 800 m)

T (o)
]%% - 2,33 x 1074 dyne cm-3;
V= 0atz = 1010 m (estimated by extrapolation of the V profile);
\% (0) = 16.33 m sec”
Vg(k) = V{ (1010 m) = 18.0m sec-1;
W (1010 m) = 18.5 m sec” ' (estimated by extrapolation of the w profile).
Note that this implies that geostrophic balance is not quite achieved at
h = 1010 m, where T (1010 m) is estimated at 0.2 dyne cm-z, 1. e

approximately 4% of 7T (0).

6. Swinbenk's Analysis of the Leipzig Data

Swinbank's analysis of the Leipzig data leads him to adopt a formulation
for the boundary layer which proposes that the stress vector is parallel to
the wind vector rather than to the vertical shear of the wind vector
(Swinbank (1970)). Support for his hypothesis is drawn from the ssme data
used by Lettau to "verify" the conventional flux-gradient relationship,

Using the LWP data and accepting Mildner's measured horizontal pressure
gradient as 2.5 x 1074 dyne cm'3, Swinbank criticises Lettau's assumption
that the geostrcphic wind is constant with height throughout the layer and

instead accepts constancy of the horizontal pressure gradient and a density

14.



stratification in accordance with the measured lapse rate of O.65°C per 100 m.
The resulting effects on the geostrophic wind profile have already been discussed
and were included in the reanalysis based on Lettau's hypothesis,

Initially, using the integrated boundary layer equations for unaccelerated
flow, Swinbank's only condition is that there exists a height, the top of the
boundary layer, where the shearing stress is negligibly small, From equations (3)
and (4) the shearing stress components at any level below this height, W , are

given in terms of the integrals of the geostrophic departure;

_;feviz,
h

e _fje(vg-u) Az,
h

The height, h , has to be determined before the stress profiles can be

. (33)

(34)

obtained. Swinbank eventually uses his theory of parallel stress and wind vectors

to deduce that for the LWP, W = 1070 m, and it would appear from his graphical
results that this value has been accepted for the top of the Ekman layer in the
evaluation of the stress hodograph which was carried out prior to the new formulabiam.

The knowledge of the boundary layer top, the wind profile and the horizontal
pressure gradient allows the geostrophic departures and hence the stress components
to be computed. Swinbank observes from a comparison of his computed stress
components with the LWP that the directions of the wind and shearing stress agree
closely, level for level, throughout the layer.

On the basis of this apparent parallelism Swinbank proceeds to formulate
relationships between the pressure gradient, shearing stress vectors and wind
vectors throughout the boundary layer. These relationships are then tested against
the LWP data with an apparently high degree of success. The graphical represemnt-
ation of the results with their lack of scatter, generally uncharacteristic of
observational boundary layer studies, appear to imply powerful support for

Swinbank's hypothesis. This is an important point which we shall return to at a

later stage.

15.




1 Criticism of Swinbank's Analysis

At this particular stage let us only consider that part of Swinbank's
analysis which leads to his observation that the LWP suggests a parallelism
between the wind and the stress at all levels within the boundary layer.

(a) A major criticism is that Swinbank has based his observations on
the profile which was chosen by Lettau as the best fit to the flux-gradient
theory. It should be recalled that a principal difficulty with the

Leipzig data is the absence of reliable information on the magnitude and

the direction of the geostrophic wind which were only roughly determined

from synoptic measurements, Lettau's analysis is designed to provide the

o((O) which best suits his hypothesis and it is hard to believe that a
profile chosen in this way would also be the best fit for a hypothesis which
requires the stress parallel to the wind, Remember too that Lettau did not
incorporate into his analysis the thermal wind effect suggested by Swinbank,

It is therefore inconsistent of Swinbank to reject certain aspects of

Lettau's formulation and yet accept his representative profile as a basis

for a new hypothesis.

It is necessary to redo this part so as to obtain the profile which
best fits Swinbank's theory. The reanalysia will follow closely that

used to test Lettau's hypothesis and the error computed will be the

root-mean-square angular deviation between T and‘! for a given x(0) ,

(b) Following on from the first criticism we note that the derived stress

hodographs are very sensitive to small changes in the estimate of the

pressure gradient and so the geostrophic wind taken from weather maps is
too inaccurate for compering different theories., Swinbank has accepted

Mildner's measured value of 2.5 X 10-4 dyne cnr3 for the horizontal

pressure gredient, This leads to a value of V‘. at iE ak , the top of

the boundary layer, which is not consistent with the shape of the LWP,

ie V% (1070m) = 19.44m sec'l. It is necessary then to deduce a value

of \zp\ from the theory.




(¢) Swinbank has only needed to enforce a boundary condition at the top
of the Ekman layer. Unfortunately, although the condition,

u———th L Ve—30 Ty —»0, t,—,o as z—> h , (35)

is readily acceptable, the height, h , remains to be determined and for

e

(k\ y @ prior knowledge of the horizontal pressure gradient is required,
We need not be so demanding on our upper boundary condition., Just

as Lettau's hypothesis produces the two significant height- iy 22,

Swinbank's hypothesis yields the level 2* such that,

Ty = 0 'c: =0 at z = z*, (36)

k]

v=0
This level coincides with h y the level Swinbank deduces as the top of

)

the boundary layer; however, note that at i‘conditions need not be
geostrophic and 't;(z*) need not be zero, although such conditions are
not ruled out,

(d) Swinbank takes no account of the lower boundary condition which
requires that the stress vector is parallel to the limiting direction of
the wind vector as 2z -—.. 2o ("the surface"). This boundary condition
is necessary on physical grounds and indeed is consistent with Swinbank's
own hypothesis,

In the reanalysis which follows the above boundary conditions at
the surface and z* will be enforced, the pressure gradient will be
determined from the profile and the stress components will be obtained by
integration upwards from the surface,

8. Reanalysis Based on Swinbank's Hypothesis

The reanalysis is carried out for the same range of (0) = o, (0)+§
defined in the reanalysis based on Lettau's hypothesis, and all numerical
integrations are carried out with the same 25m step in the vertical,

For each value of «(0) in the specified range the following procedure
is followed:

(i) Knowing § , the LWP yields the profiles w, v, V= \\_(| :




(ii) The level z* is found by extrapolating the curve for v (z) and

noting the value of z where v (z)= 0. In fact z* was obtained in this

way for the whole range of «(0) and the resulting values were smoothed

by eye as shown in Figure 7. Whenever such a smoothing process is carried
out the smoothed values are used thereafter, The wind speed u ('ﬁ is
obtained in a similar fashion by extrapolation of the wind profile and the
smoothing is indicated in Figure 8.

(iii) By graphical integration we evaluate,

R (2% = f]zeu dz (37)
A R (2l ,cf‘ev i (38)

the smoothed values being illustrated in Figure 7.

(iv) To find the pressure gradient we suppose that Swinbark's hypothesis

can be taken to hold at & = z*, ie T (z) = B(z) \_{ (z) at z = z*,

The momentum equations and boundary conditions yield, after integration,
Tele") w00 - R (2% = BR)ely Q9

Ty (2h) & (o) Rif=Y) -Igs feig AN
Now, on the basis of Swinbank's theory,
Ty(2) = B(2)v(2) + B(z) v(z) , (41)
therefore, 'C'; (zas) = B(z% Vl(li)

Il

‘f'e Wiz, - l%ﬁl >

< B(z") = (feuw —/‘3@/) /v'(l*) ;A
From equations (39), (40) and (42), and the surface boundary condition,
Tylo) = T, (0) tam o (0)

we obtain,
\3\! \ [z* cot & (0) + w(z*) = f¢ W(z*) + R, (2" cota(o) +R, @Y.
L v/ (z*) v!(z*)

(3)




Knowing v'(z*) end f puw(z*) in addition to the parameters already

obtained we can now evaluate the pressure gradient,
Equation (42) is valid provided that v’/(z*)# 0 and it turns out
that for all values of o (0) the estimated value of V'(x%)= -8 x 10”3 sec™l,

The smoothing of §pw(z") is given in Figure 8.

If the wind is geostrophic at z* and v/z*){ O then,
TR 0.
Bz*) = O,
and Txl2®) =20

Since, now,

I?; = feu(z’),

equation (43) reduces to

‘?’ = 4 \:R.(z*) + Rl(z*)tuac(o)}- (44)
Y v

Thus equation (43) will give the pressure gradient to balance the coriolis

term when conditions are geostrophic at 2*, otherwise ‘:‘gl will be such
that Swinbank's hypothesis is true at z*, ie T (z*) parallel to V(2%
The smoothed values obtained are given in Figure 8, The geostrophic
wind at 2* corresponding to the pressure gradient is calculated and by
comparing the values of Vt(z.*) with w(z*) it is found that the derived
profiles suggest geostrophic balance at z* for o (0) between 26.7° and
22

(v) With the above parameters we can now evaluate the stress components

at the surface and the residual stress component at the height 2* as

follows:
T, 0 = l?;\ g - Rz (45)
Te(0) = Ty(0) cot o (0) | (46)
rio) = lxlovl,
ey (o) o R, Y (47)

The residual stress is of course zero if conditions are geostrophic at 2z¥,

19.




(vi) The stress components at 25m intervals are given by

TekZ) 2 T Al = R, (=) (48)

T,@ = G - [z R, (9
9

(vii) The angle, &« , between the wind vector and the geostrophic wind

direction is evaluated from

o G Bl (1_), (50)
(V&

and the stress angle O , from

P = ta.n.'('t':> ) (51)

the usual care being taken over the correct quadrants in which X, @ lie:

(viii) The root-mean-square angular deviation
H Iy

Es(0-H) = )1 | (x-8)"dz} ,

o

(52)

is evaluated mumerically, where the meaning process is carried out

over the two ranges 0-400m and 0-800m,

The resulting r.m.s, errors, €5 , are tabulated in Table 2 and

are plotted against o« (0) in Figure 9.




i

Q. Results from the Swinbank Reanalysis

The value of o¢ (0O) which is best suited to Swinbank's hypothesis that
at every levgl in the atmospheric boundary layer the stress vector is parallel
tc the wind vector should be taken as that which corresponds to the minimum
value of € observed in Figure 9. However, we note from the figure that
Swinbank's hypothesis does not give a minimum root-mean-square error anywhere
near the angle o (0) suggested by both the synoptic estimate and Lettau's
hypothesis. Although over part of the range the actual values of Swinbank's
r.m.s8, errors are much smaller than the minimum EL recorded in the Lettau
reanalysis, the corresponding profiles, pressure gradients and geostrophic
wind speeds are not acceptable on physical grounds.

This is best illustrated by the ratio of the computed residual stress at
z* to the stress magnitude at the surface. Although 2z* may not be the exact
height where the stress vanishes we would certainly expect the stress in this
neighbourhood to be very small. From Figure 8 we see that the criterion,

‘

T (2% <00,
T(0)

is satisfied only in a very small neighbourhood of o (0) = 27.0°, i.e. in this

neighbourhood the ratio T(z%)

T(o) is extremely sensitive to changes in «(0).
The application of this criterion is consistent with Swinbank's choice of uppexr
boundary condition; moreover it implies an angle near the estimated synoptic
geostrophic wind direction and provides a geostrophic wind and pressure gradient
comparable to those estimated from and suggested by the wind profile.
For o(0) = 27.0°, Es (0-800m) = 22°, and the corresponding wind and stress
components are given in Table 3. For & (0) = 26.9°, t(%o):: 0.16 and the
error has dropped to €,(0-800m) = 12°,

It should be emphasised that the profile which corresponds to geostrophic
conditions at z* is chosen as that which gives the best fit to the observed data

based on an attempt to comply with Swinbank's hypothesis and upper boundary

condition. The only extra condition, not enforced by Swinbank, is the




requirement that the surface stress be parallel to the limiting direction of
the wind. The reanalysis stress hodograph for (0) = 27.00, and Swinbank's
original stress hodograph are presented in Figure 10.
The r.m.s. error for the chosen Swinbank reanalysis profiles is much
larger than that obtained in the Lettau reanalysis and so we must conclude
d that, using the lLeipzig data, Lettau's hypothesis provides the more consistent
representation of the stress and wind profiles.

10. Discussion of Swinbank's Theoretical Formulation

The conclusion that the Leipzig data do not support Swinbank's hypothesis
appears at first sight to be in violent contradiction to the results presented
by Swinbank in his formulation of the wind-stress relationship. We shall see
that all of the results produced in support of the validity of a wind-stress
parallelism can in fact be obtained without invoking such a theory.

On the assumption that the wind-stress parallelism is real, Swinbank

w

derives certain relationships for the boundary layer parameters which he tests
against the LWP. We shall follow the same lines as Swinbank without making
that assumption and compare the general results with those obtained by him.

The general boundary layer equations for horizontal motion are,

e du - fov. = ¥ (2 Cos ) | (53)
dt 32

g dv.. + Fou. = E\'.\ %3 (Twan) (54)
dk 2y 22

Swinbank points out that,

“

N ig o d (wsvy=0 o (55

N ;
w e

+ fu

wE(EE

This is a less restrictive condition than the general assumption of unaccelerated
flow, however it should be noted that Swinbank's computed shearing stress from

integration of geostrophic departure assumes that the Leipzig flow is -




unaccelerated.

Division of (53) and (54), with condition (55), gives

e 3}_\ sn ot — 26 T tom (x-6) . (56)
L W) cos (x-8) 32

If the flow is unaccelerated, elimination of T from equations (53) and (54)

produces the more useful form

22 3y

With the hypothesis that o((Z)=0(z) throughout the layer equations (56) and

(57) reduce to Swinbank's formula,

ks o -\}k sim &

3z (98)
We can express the full equation (56) in the form,
¥ = T sec(x-8) + A , (59)

¥Z 2

where A(z) = -0 , T tom (x-0) , using (56),
3Z

2 \)}_\ [Sim. 8 + Sina Sec (ac—e)] -{eVsim («-8), (60)
2y

when we eliminate T' from equation (56) by means of equation (57)) and compare

the relative contribution each term on the R.H.S. makes to the magnitude of

T’ for any value of z. This has been carried out for the Swinbank best choice
profile with o (0) = 27.0° and the terms («-0), t’/z; , Sec (x=6) A /['c_; secw-9))
are given in Table 3. Recall that for this profile the r.m.s. angular deviation
error is of the order of 20° and 80, in this case, there is no question of

Swinbank's hypothesis being valid. However we note that the ratio of the first




term on the R.H.S. of equation (59) to ‘C; , given by sec (¢-0) , is very close

to unity, especially in the lower levels where the stress magnitudes are
greatest, and, on average, the second term on the R.H.S. is about one order
of magnitude less than 'C;’ sec (x-8) . The result is that t‘/‘c; always lies
in the range 0.9 to 1.1.

It is evident then that, in general, the full expression for ‘L" is
dominated by the term T; which Swinbank uses for T’ on the basis of his new
formulation. Exceptional circumstances could no doubt arise where the relative
behaviour of 8' T  (x-6) is uncertain.

At the level z* where the wind becomes parallel to the geostrophic

direction equation (57) reduces to

[% (?QV - \%‘;\) swn O : (61)

*
Therefore T (z*) =0if @ =0

| RN |
%
]

zT=Z 7 3w A

or if conditions are geostrophic at z*.
If the latter condition is taken to hold for unaccelerated flow at z*

then that and the equations of motion imply
t' (z*) = T (2*) = 0, (62)

where z* is now the top of the boundary layer as designated by Swinbank.

Let ‘1: z* - 2z and expand T close to z* as Swinbank suggests,

P = TV - v e T 0y (63)
2t
= 1 o & o (A O(yl‘) ; by virtue of equation (62),
2!

and

T'(2) Tz - ) + P ) +0y)
2! :

(64)

i

o (2% + _.41.__ ,rm(z.) + 0(,13)
b 51




Equations (56), (63) and (64) give
-t + Q‘T ") % o) = T, (2) sec («-8) = Q_ 7'(2%). 0'(z) tom (x-6) +O ().
2, i

(65)
Therefore the leading term in the series expansion for l’; (z) sec(a-6)
for small T yields
ti) = - |%|sna = -mrian i (66)
s > = M i2?) el (-0) 3+ Ofnt)

We note that for |«-0) & 30°%, cos (x-@) takes values in the range 0.86 to 1,

and so, for a given occasion, equations (66) and (63) imply

sima(z) ~ % , (67)

and TR e (68)
for small values of ‘\ = 2% - 2, Again we note that these relationships have
been obtained without any assumption of a wind-stress parallelism.

In order to verify that the above results are independent of the claims
of the two conflicting hypotheses we can attempt to choose a best fit profile
from the Leipzig data without invoking either of them. For each « (0) estimate
the level of the top of the boundary layer by finding the height % = h

where v(z)=0O . The upper boundary condition,

u.=\/¢ , V=0 |, Te=T =0 at z=h , is adopted, and

extrapolation of the w(z) profile to z = h provides the value Vg(k) and hence

the pressure gradient.

The surface stress components are evaluated by graphical integration,

h
Tx(0) = {/ev dz
; h
'C.S(O) = ’;§|‘\ —{/eu J.Z,

9(0) = ton?'('c,co) .
TxlO)

which give

25.




The resulting values of B(0) are compared with the corresponding o« (0) ;
see Figure 11. If we now demand that the stress vector at the surface be
parallel to the limiting direction of the wind vector, i.e. o< (0) = 0(0),
then we see from Figure 11 that this condition implies a well-defined value
of & (0) = 27.1°
Although arrived at in a different manner this profile agrees well, as
it should, with the profile we were eventually obliged to choose in our
Swinbank reanalysis. The stress components are generated in the usual way by
integration of the equations of motion. Figure 12 illustrates how |6—oL\
and \Q—Pl behave throughout the boundary layer for these profiles and it is
obvious that neither Swinbank's nor Lettau's hypothesis applies, in fact for
the profiles obtained &g (0-800m) = 20°, which was the value already found for
the best choice profiles which could be attributed to the Swinbank model.
Having established that the stress and the wind are not parallel in this
case we can now consider each of Swinbank's claims in relation to the profiles.
(i) Figure 13 shows sima(z) versus z and we note the near linearity of
the relationship, which was suggested by equation (67) for values of
z close to h (= 2*).
(c.f. Swinbank (1970), Figure 3)
(ii) The stress magnitudes are derived in two ways. Swinbank's formula,
equation (58), is.integrated to provide the estimate T (2) and integration
of the equations of motion provides T (z). Figures 14 and 15 compare
T and T, throughout the layer (c.f. Swinbank (1970), Figure 5), and
Figure 16 shows T versus "tl where ) is the depth below the top of the
boundary layer (c.f. Swinbank (1970), Figure 4). We note then that
although there is no question of a wind-stress parallelism, Swinbank's
formula for the magnitude of the stress provides a very good estimate.
The relationship between the stress and % derived for small values
of M in equation (68), appears to hold over a wider range of 2, going
astray near the surface where presumably the neglected higher order terms

become more important.
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(iii) It also turms out that if the full relationship for t’ is used
in the redetermination of the wind components instead of 13' then the wind
profiles obtained agree with the initial data; there is no need to invoke
acceleration terms. Although the error involved in approximating T’
by 13' does not lead to significant errors in the shearing stress values
arrived at by integration of T; , when used to re-derive the wind profile
components it certainly does involve important errors,

The form of v (z) can be obtained approximately from the observation

that

?

¥ A < Vgs'\mo(

for as long as Y(i)is near geostrophic in magnitude, therefore
Yoo , for small values of "
This linearity is clearly noted down to about 500m (c.f. Swinbank (1970)
Figure 6(b))
To conclude, then, we note that all of the results which Swinbank
claims as direct support for his new wind-stress formulation can be
obtained independently of any such hypothesis and in fact hold for cases
where there is no semblance of a wind-stress parallelism,
11. Conclusions

The aim of the present study is to provide an objective assessment of two
conflicting wind-stress formulations throughout the atmospheric boundary layer
in relation to the Leipzig data, The nature of the basic data allows us an
important degree of freedom in our choice of representative wind profile because
of the lack of reliable measurements of the direction of the geostrophic wind.
It is unfortunate that both theories are very sensitive to the choice of the

intermal parameter o¢(0), the angle between the surface wind and the isobars,




3

Allowing for a reasonable range of possible values of ®(0), an attempt

has been made to ensure that each method is applied to the wind-profile best
suited to the relevant hypothesis, The reanalysis based on Lettau's hypothesis
presented no problems in this respect and the outcome was a set of wind and
shearing stress profiles which complied admirably with the synoptic estimates
made by Mildner and with our present understanding of the structure of the
boundary layer, and which also produced a root-mean-square error for the
hypothesis of only 2° over a great depth of the whole boundary layer, On the
other hand a similar method of reanalysis based on Swinbank's hypothesis did
not provide any internal consistency between the physics of the situation and
the degree of fit to the theory. It was deecmed necessary to accept certain
physical restrictions at the top of the boundary layer and as a consequence we
were obliged to choose a value for o (0) with corresponding profiles not

compatible with Swinbank's theory, the fitting error being of the order of 200.

Our conclusions are:
(i) The Leipzig observations do not support the Swinbank hypothesis that
the wind vector is parallel to the stress vector throughout the boundary
layer; however, Swinbank has derived expressions which, although they are
not dependent on such a hypothesis, appear to provide very useful means
of computing the stress magnitude throughout the layer,
(ii) Lettau's conventional, flux-gradient approach is internally consistent

and is compatible with the Leipzig data to a high degree.
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Table 1 Vertical profiles at 50m intervals for,
(1) in general (i) the density stratification, ¢ , Xle(gm cm-3),
(ii) the Leipzig wind speed, V, (m sec-l),
(2) o« (0)=26.1° (i) the LWP components, (uL VL), (m secnl)
(ii) the functions Ry, Byp,s (dyne cm'z),
(3) o (0)=25.0°, the best choice o (0) for the Lettau reanalysis,
(i) the wind components, (u,v), (m sec'l),
(ii) the stress components, ( Tx , Ty ), and magnitude,
T,(dyne cm-z),
(iii) the austausch coefficient, A, (gm on™t sec-l)
(iv) the modulus of the angular deviation between
the wind gradient vector and the shearing stress
veetor, |p-0|, (degree).
The LWP o (0) = 26.1° Lettau reanalysis o< (0) = 25,0°
$ 1. e Rhe R on Al 5 N Yol T lite b A 1IN
¢ 0 1,250 0 0 0 0 0 0 0 4.25| 1.98 | 4.69 0 0
50 1,244 110,13 9+151 4.35 0.44 ] 0.26 9.241 4.17 4.00] 1,26{ 4.20] 96.4| 0,6
100 1.238 | 11.43] 10.45| 4.64| 1.13]0.58} 10,54} 4.43 3.70] 0.79| 3.78 1548 5.5
150 1.232 112,54 ] 11,58 4.80 1,91} 0.91] 11,67 4.57 3.38] 0,41} 3.41 157101
200 1,226 113.54] 12,60 4.95 219 1,251 X2, 70:4 4,70 3.06| 0,10} 3.06 160} 1.8
250 1,221 | 14.36 | 13.48] 4.96 3.66 | 1,60 13.58 | 4.69 2.73]-0.15} 2,73 161 0.4
300 | 1.215 | 15.12| 14,30 4.90| 4.62 | 1.94] 14.40} 4.61 2.411-0,351| 2.43 162 | 0.3
350 1,209 { 15.72 | 14.97| 4.78 5.63 12,28 15,06 | 4.48 2,09{-0,50 | 2.15 159105
400 | 1,203 | 16.28 | 15.62| 4.60] 6.68 | 2,60 15.71 4,29 | 1.79{-0.61|1.89| 136 3.1
450 | 1.197 | 16.84 | 16.28 | 4.29| 7.7712.90} 16.36 3496 | 1.51|-0.67|1.65{ 122| 3.5
500 | 1.192 | 17.30 | 16.83| 4,00 | 8.90 | 3.19 16,91 | 3.66 | 1.25{-0,70}1.43| 121 1.8
«550 | 1.186 |17.69 | 17.30 ] 3.71 10,05 | 3.45| 17.37 { 3.36 | 1.01|=-0,71}1.23] 114 1.8
600 | 1,180 | 18,02 | 17.70 3.37 | 11.23 | 3.69} 17.76 | 3.02 | 0.79{-0.69 | 1.05 111 | 2.9
- 650 | 1.175 118.25 | 17.99 | 3.07 | 12.42 | 3.90{ 18.05 | 2.71 | 0.60{-0.66 | 0.89| 107 3.9
700 | 1.169 |18.43 |18.23 | 2.73 ] 13.63 4,101 18.28 | 2,37 | 0.43]-0.61 | 0.74| 96.4 | 2.5
750 | 1.163 |18.58 | 18.42 | 2.43 14.85 | 4.27 | 18.46 | 2.06 | 0,28{~0.55 | 0,62 | 80.7 | 0.5
800 | 1,158 |18.71 | 18.60 | 2.06 16,07 { 4.41 | 18.64 | 1.69 | 0,16 =0.49 | 0.52 | 66.4 | 1.1
850 | 1.152 |18.74 |18.66 | 1.70 | 17.25 | 2.55 | 18.69 | 1.33 5 4 " T g
900 | 1,147 118.73 | 18,68 | 1,31 | 18,50 | 4.63 | 18,70 | 0.94 - - - - -
950 | 1.141 |18.64 [18.62 [ 0.91 [19.70 | 4.73 | 18.63 | 0.54 - 2 - i
1010 | 1.134 [18.50 - - - -|18.,50) 0 [-0,06{-0.18 | 0,19 -] -




Table 2 The following parameters are listed for values of o (0) (degrees)
in the specified range.
(1) For the Lettau reanalysis.
(i) Significant levels Zz, and Z, , (m)
(ii) The root-mean-square angular deviations &€, (0-400m) and
€, (0-800m), (degrees).
(2) For the Swinbank reanalysis.
(i) The root-mean-square angular deviations &g (0-400m) and
€,(0-800m), (degrees)
o (0) 3 2, &, (0-400m) | €. (0-800m) | &g (0-400m) | €4 (0-800m)
22.7 207 872 3.9 250 » 0.5 0.4
23.2 211 875 2.4 37.6 *» 0.6 0.4
23.8 217 878 2ok 18T - ® 0.6 0.5
24.4 223 882 1.9 Te5 0.9 0.7
25.0 228 885 155 2.1 1.2 1.0
25.5 233 889 1.4 2.4 1.7 1.3
26.1 238 893 1.5 4.2 3.2 2.9
26.7 243 897 1.4 4.7 7.1 7.6
27.0 - - - - 13.7 21.8
27.2 247 901 1.5 6.1 250 > 50
27.8 252 905 1.6 7.2 * * * *
28,4 | 256 | 910 .7 7.9 * * _—
29.0 | 261 | 915 2.2 9.2 * * » *

* Computations imply A(z ) £ O for a range of z below 800m

¥%* Computations imply negative surface stress components.




Table 3 Vertical profiles for the Swinbank reanalysis case
with « (0) = 27.0 degree.

2 u v tw | vy | % | -0 1:/, sec(a-e)% ‘J
(m) |(m sec'1) (m sec'1) (dyne em ) (degree) %s T S
0 0 0 |5.08]2.59 |5.71 0

50 9.08 4449 |4.82]1.85 |5.16] 5.3

100 10.38 4.80 |4.4901.36 | 4.69] 7.9 |0.94 | 1.01 { -0.09
150 11.50 4.98 |4.14]0.96 | 4.25| 10.4

200 12,52 Budd 13679 10,62 1 3:i84]  13:0.°10.9Y T 1.03 -0.12
250 13.40 517 3443 1 0.35 | 3.45} 15.3

300 14.22 892|307 10.13 1308l 175 j0:91 | 9.08 -0.13
350 14.89 5.01 |2.72 }-0.05 |2.72} 19.6

400 15455 4.84 |2.38-0.17 |2.39] 21.5 j0.92 | 1.07 -0.14
450 16.21 4.54 |2.06 |-026 |2.08] 22.9

500 16.77 4.26 |1.76 |-0.31 | 1.79] 24.3 [0.96 | 1.10 -0.13
550 17.24 3.98 | 1.48 |-0.34 |1.52] 25.9

600 17.65 384 1122 1034 | 1.281 273 o1 | %3 -0.11
650 17.94 3.35 [0.99 | =0.33]1.04] 28.9

700 18.19 3.00 |0.78-0.30 {0.83| 30.3 [1.05 | 1.16 -0409
750 18.38 2.72 |0.59 | -0.26 | 0.64| 31.9

800 18.57 2.35 |o.42 | -0.21]0.47] 34.0 |1.10 | 1.21 -0.09
1094 18. 34 0 }o.06 0]0.06f 180
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Swirbank reanalysis parameters z*(m), Rq(z*) (dyne cm“z),
and Rz’z*) (dyne em=¢) as functions of ®(0) (diegree).
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Figure 12. Analysis independent of hypotheses of Lettau and Swinbank.

Vertical profiles of |9-B| (degree) and‘e—tll (degree)
when «€(0) = 27.1 degree
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Figure 15. Analysis independent of hypotheses of Lettau and
Swinbank., Tg(dyne om™? ) versus T (dyne cm‘z),
for values of z (m) at 50m intervals.
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Figure 16, Analysis independent of hypotheses of Leti‘.a.u2 and

Swinbank. The stress magnitude, T (dyne om™ ),
versus the square of the depth below the top of
the boundary layer,m*x 10"*(w"), for values of z(m)
at 100m intervals.




