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1 Introduction

Diffusion is an important process in virtually all numerical models of atmospheric flow.
These models often use a finite grid on which the diffusive terms have to be evaluated. A
variety of numerical methods can be used to perform this evaluation. These methods range
from a computationally cheap explicit forward time-step scheme to a very computationally
expensive fully implicit scheme. The disadvantage of the explicit scheme is that it requires
a very small time-step in order to ensure convergence of the solution so that the run will
be stable. The implicit scheme imposes no such limit on the time-step, although a limit
may be imposed by other factors. Clearly a compromise between having to run with a
small, but quick time-step and a run with the possibility of having a larger time-step, but
with high computation time would be of some benefit. Attempts at this compromise in
the past have always had their own disadvantages. Here, some of the schemes used in
the past are reviewed, then a new scheme suggested by Mason (priv. com) is described.
The implementation of the scheme into the large-eddy simulation code (Derbyshire 1991)
currently used in Met O (APR) and the results obtained are then discussed.

2 Background

Various finite difference schemes exist which can be used to solve the diffusion equation.
A very simple one-dimensional model was written to investigate these schemes. Only
schemes that are accurate to the 2°¢ order in AZ are considered. The model solves the
simple one-dimensional diffusion equation:
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where U is the horizontal velocity of the fluid, £ is time, v is the kinematic viscosity and
Z is the vertical height.

'I:j;,e ;nodel simulates the purely dlﬂ'uuve behzmonr of the flow of a fluid with eqn;tapt




not considered. The imposed boundary conditions are that there is no slip at either the
moving, or the stationary plate. The model has ten vertical points between the plates and
points above the upper plate and below the lower plate in order to impose the boundary
conditions. All points are equally separated by distance AZ. Various numerical methods
were used to solve the diffusion equation (1). —_

1. First, the method currently used in the Met O (APR) large eddy model is discussed. i

It is a forward-in-time, explicit scheme. In finite difference form it is written as
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where k refers to any one vertical level. Uf represents U on level k at time £, so
similarly Uy]] represents U on level k + 1 at time t — At.

Here U is taken at t — At in order to calculate U at ¢t + At. A linear stability a.na.lyms
shows that this method is conditionally stable on At < T4, where Ty = A— For ™
details of this analysis see Appendix A. When this limit is more restrictive than the
limit imposed by the advection scheme the run is said to be viscosity-limited. When
the advection scheme limits the time-step the run is velocity-limited.

2. Secondly, an explicit, centred in time scheme was considered where values for U at

time ¢ are used to calculate U at time ¢ + At. For this scheme, Equation (1) is 1
written in its finite difference form as
U’:-H A U’:—l i o Uk+1 ik Ul: Ut — UL (3) o
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This scheme is very unstable. Figure 1 shows U profiles for this scheme at a) ¢ = Ty; =
b) t = 2Ty4; c) t = 3T and d) ¢ = 4T4. A time-step of ¥, T4 was used in the run.
The run is ‘blowing up’. The same result is obtained whatever time-step is used.
This can also be shown analytically. The run is therefore, unconditionally unstable. 0
3. The third method considered was that devised by DuFort and Frankel (1953). This
can be written as ™
U U v (Uh KOO RO AU UL
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This is unconditionally stable, but can produce spurious oscillatory modes. Figure 2a
shows the U profile calculated using this scheme. A time-step of 4T, has been used P

and the run is at t=2Tp, where Tp = ﬁL Tp has been chosen as an appropriate
time-scale for diffusion over the domain depth H. Figure 2b shows the same run
one time-step later. Figures 2c and 2d show the run 100 time-steps further on -
than 2a and 2b respectively. Note the large oscillations about the mean profile, but ‘
unlike Figure 1 the oscillations are not growing. These oscillations are a well known

consequence of this scheme. _ !

f4 ‘The fourth method conndbred was the fuIIy implicit acheme bhe\ﬁm




Here Ut] and U] are unknown and U;t! is the quantity required from the cal-
culation. If the equation is re-written for all levels in the model, a tridiagonal kkp
x kkp matrix equation, where kkp is the number of vertical levels in the model,
can be written and solved. This is unconditionally stable and does not produce
the unwanted oscillations, but is computationally very expensive. In the simple
one-dimensional model this scheme used about 2%, times as much CPU time as the
forward-in-time explicit scheme. Figure 3 shows a U profile at ¢ = 2T for a run
with a time-step of 4T4. It should be noted that in most models, diffusion is not
the only process that dictates the maximum size of the time-step, so beyond a cer-
tain point (which will be the time-step imposed by the next most limiting process),
eliminating the restriction from the diffusion scheme becomes irrelevant. However,
in this purely diffusive model any time-step can be used with this scheme without

affecting the stability or the results (except for the influence the time-step has on
truncation errors).

The above is only a selection of schemes that have been written to solve the diffusion
equation, but illustrate the problems involved. In the next section the motivation behind
the attempt to overcome these problems is described.

3 The Mason Scheme

Any information takes a finite time to diffuse a certain distance. In the explicit diffusion
scheme currently being used in the large-eddy model (the scheme described by equa-
tion (2)), any level, k is only influenced in any one time-step by the k+ 1 and k — 1 levels.
This imposes a limitation on the time-step, such that At must be less than or equal to
the time that any information takes to diffuse from one level to the next. By contrast,
the fully implicit scheme allows every level to be influenced by every other level, every
time-step and therefore, presents no limitation on the time-step. The Mason scheme can
be described as a mixture of both these methods, in that the calculation for the kt* level
uses implicit values for terms at the k + 1 and k — 1 levels, but explicit values for terms
at the k + 2 and k — 2 levels. This allows information that is two levels away from the
k™ to have an influence on it and hence should allow the time-step limitation to be some-
what relaxed. In fact, the stability analysis (see appendix A) shows that this scheme is
unconditionally stable. This is discussed below in more detail.

For every level (e.g. the k**) the following three equations can be written. As described

above, the terms at k + 2 and k — 2 (labelled (A) and (B) below) are evaluated at time
t — 1. All other terms are at time ¢ + 1.
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A 3x3 matrix can then be written for every k level and solved for U;*". It is computation-
ally a little more expensive than explicit methods, but is very much cheaper than the fully
implicit scheme. Also, the scheme appears not to support the spurious oscillatory modes
that the scheme by DuFort and Frankel exhibits. As noted above, the stability analysis
suggests that the scheme is unconditionally stable, when the physica.l arguments might
suggest that it should be conditionally stable on At < M . The scheme there-
fore, appears to give us something for nothing! Figure 4 shows U proﬁles at a) t = %, Tp;
b) t = Tp; ¢)t = 1%Tp and d) ¢t = 2Tp. The solid lines are results from the Mason
scheme, the dashed are the analytical result (Batchelor 1967, Chapter 4, Section 3). A
time step of T4 has been used in the run. Note that the curves are smooth with no os-
cillatory modes, but that the Mason scheme appears to ‘run slow’, i.e. there is a time lag
between the Mason scheme and the analytical solution it is trying to reproduce. This is
not due to discretization errors as it does not occur for either forward-in-time explicit or
fully implicit schemes with the same grid and time-step. The reason for the lag is worth -
further investigation. Assuming constant AZ and v the Mason scheme can be re-written
as

Ut+l Ut—l
2 o St L e
(2c +40+1)( o )
Uit -t 4 Ut (Ut — 20 + UED)
v ( N7 +4C GAZY (9)

© (D)

where C = %2 The right hand side of equation (9) can be divided into two halves.
The first half, labelled (C) is just the simple forward-in-time explicit scheme as shown in
equation (2). The second half, labelled (D) is the same scheme, but over two grid lengths,
multiplied by a weighting factor. Symbolically, this approach can be represented by

76t [ ]AZ ﬁ[aU] ()

where [ A represents the explicit scheme over distance AZ and [8 ] AZrepreseni:s the
explicit scheme over distance 2AZ. Physically, the usual explicit scheme works well for
small values of C so that, as discussed above, information can only travel one grid-space
in one time-step. As C increases we require information from further away to influence
Uy, so we would expect 3 to be proportional to C. For the Mason scheme

a=1 , B=4C and y=20*+4C +1.

As the two terms on the right hand side of equation (10) are complete diffusion schemes in
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so this scheme models less diffusion than it should, hence, there is a time lag. We might
suggest using values for o, B and v of

a=1 . B=4C., and .0.=4C+.1.

This leads to the diffusion scheme represented by

Uyt Ul Ut 4 UR 4C(UET — 208 4 UL
bt TR o, AN VG k+1 k k—l k+2 k—
(40“)( oAt ) = ( AZ % 2AZ)? ) (11)

A stability analysis of this scheme leads to the requirement that

2
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which is similar in magnitude to requiring At < &jﬁ that the physical argument
would suggest. It is found that this scheme does not ‘run slow’. However, when the
boundary conditions were implemented naively, they put a much greater restriction on the
time-step than the restriction from the scheme in the interior of the flow. Implementation
of less restrictive boundary conditions was found to be non-trivial. This would make the
use of such a scheme in a general model such as the large-eddy model difficult and would
have uncertain consequences. The Mason scheme can be considered as being the same as
this scheme, but with a time-step that is redefined, so that

At—rAt( 46 o] )
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If a linear stability analysis of the scheme with the modified time-step is performed, then
stability requires

202 4+4C +1
o 2(4—o+1—_‘7“)

24C + 7 )

i.e. G < C(l+m

which is trivially satisfied for all C > 0.

From equation (12) above, the relative timing error of the Mason scheme is W‘%’;%ﬁ For
the type of applications that the Mason scheme will be used for and provided that C is
kept small enough, the errors should be no more important than truncation errors. In
non-linear models, it is probably sensible to run with C' = %,. This would mean that the
timing error would be ¥; or about 14%. If more accuracy is required then C = ¥, gives a
timing error of %7, about 6%.

So far we have only considered the Mason scheme applied to a very simple hneu'

,mod;l ‘W'e nowvlook at xts mplemmtg@on in a rather more sophutxcated ki




4 Adding the Mason Scheme to the LES

The LES model is much more complicated than the simple one-dimensional model dis-
cussed above, in a number of respects. Firstly, it is a three-dimensional model. Secondly,
it models not only diffusion, but also other terms such as advection, Coriolis and pressure
gradient. Thirdly, the model allows for a stretched vertical grid and finally it has a non-
uniform, velocity dependent viscosity. Ignoring advection, Coriolis and pressure gradient
terms, the diffusion equation (for U only) becomes -

(A) (B)
o _ 0 (w00} Bf0 SV a0 o
o ~ 0z\"9z) oy\"|oy " bz|) T 8z\"|0:" b= (13)
Coding all these terms into a scheme of the type described above would be extremely
complicated. The cross terms (A) and (B) in particular are very complicated to code
in such a scheme. The resulting code may take more CPU time than it saves, though
allowing a larger time-step. A comparison of the stability of each of the terms in the
equation was performed in order to find which terms were most limiting to the stability,

and hence the timestep, in model runs. In order to simplify the procedure, viscosity is
assumed constant. In reality viscosity has strong gradients which may affect stability.

Term (A) (5% (%}:—)) is analytically identical to 2 (%%). It can be shown that this

holds true even in finite difference terms. Similarly term (B) (£ (%1:-)) can be re-written

as & (aaw) Equation (13) can then be re-written as

©) (D) 530 -lE) (F)
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-a—t = 2V(w)+u(a—y{)+l/(ﬁ)+l/a (ay-i'az) (14)
The stability criterion for the explicit scheme currently used is that At < ‘:—:, where A is
a measure of the grid spacing. In many model runs Az and Ay are very much larger than

Az. Therefore, term (D) is very much more stable when using the explicit scheme than
term (£). Invoking mass continuity, 3% + 2% + = 0, term (F) becomes ""3:_2 Adding

(C) to (F) in this linear analysis, now glves us u—;’,’-, which is similar in stability terms
to (D). Term (&), therefore is the most restrictive to stability, so this term is evaluated
using the Mason scheme. All other terms are evaluated explicitly as in the original model.

The Mason scheme is incorporated into the LES code in the source routines. These
routines calculate the tendency (i.e. the change per unit time) of model variables for the
current time-step. Firstly, in the section of code that deals with viscous effects the terms
with second order vertical derivatives (such as term (£) in equation (14)) are removed.
Then a new section is added after all the other components such as advection, Coriolis

etc. are calculated, but before the boundary conditions are dealt with. This section

calculates the Mason vertical diffusion. The calculation is in the form of kkp 3x3 mb,t
sol

,Vequa.hons The elements in the matnx equa.tlon are first set up then the mat




model variables at level k = 1 are determined by the boundary conditions. The result
of the calculation is the new value for the variable after the time-step , so a final loop
calculates the tendency by subtracting the original value and dividing by the time-step.
A copy of the code for the Mason scheme calculation for just Uit is given in Appendix B.

5 Testing the Mason Scheme

It was decided that a simple one-dimensional run with the LES code would be the best
first test of the new code for de-bugging purposes. The model was actually run in three-
dimensions with 10x10x40 grid points. Each column of model variables was calculated
independently, but as all columns were initialized identically, they remained the same.
Initially the model was run with a uniform grid in the vertical, again for de-bugging
purposes. After satisfactory results were obtained, a vertically stretched grid was used.
The model was given initial profiles for U and V (see Figure 5) and then it was run to
a steady state. The original code was run as a control experiment. The mean profiles
for U and V in the control experiment after 20 000 seconds of integration are shown in
Figure 6. The mean profiles were produced by taking horizontal averages over the slices
and then averaging over the previous 5 000 seconds. The code with the Mason scheme
in place was then run, but with the same time-step criterion as the original model. The
mean profiles for U and V are shown in Figure 7. The Mason scheme returned results
that were the same to within 2% of the results returned from the run using the original
scheme. The code could now be tested fully in three dimensions.

The test in three dimensions was again run with both schemes. The columns were
not identical in this run. Small random perturbations are added to U and V at each
grid-point at the start of each run to ensure they were different across the grid. The same
random perturbations were used in all runs. A grid of 40x40x40 points was used. The
grid was uniform in the horizontal directions, but was vertically stretched. The test was
not designed to have any particular physical relevance, but the time-step used in the run
had to be viscosity-limited with the original forward-in-time diffusion scheme. When the
Mason scheme was used this limit was removed thus allowing the time-step to increase
until it was limited by the time-step requirements of the advection scheme. The results
in Figure 8 are from a run using the original diffusion scheme and the results in Figure 9
are with the Mason scheme. For completeness, the original scheme was tested with the
time-step used in the Mason run. This run was unstable and failed in seconds. Note that
the plots shown in Figures 8b and 9b show that that TBAR is considerably smoother with
the Mason scheme. It is not clear why this should be, as in order to get this profile the
three dimensional fields of TBAR have been averaged in both space and time. However,
it may be that by calculating diffusion over more grid-spaces per time-step the Mason
scheme gives smoother profiles. The parametrized turbulence (or ‘Sub-grid’) components
are very similar in both runs. The sub-grid model within the large-eddy model has not
been altered so any differences in these components are a consequence of feedback from
differences in the resolved components. The resolved components are different, but have
the same overall shape as each other.

ez

Table 1 shows a comparison of run-time statistics for both the runs. The runs were




performed on a DEC Alpha machine (DEC 3000 Model 400 with 64Mb of memory).

Table 1

Run with Run with o

Original Scheme Mason Scheme

Model Time at end of run 20 000 s 20 000 s ~—
Number of steps taken 98 800 10 500
Average time-step in run 0.2s 19s
Total CPU time taken 39h 5%, h -
CPU time per step 143 s 1.82s

CPU time per step per grid-point 2.23 x 105 s 284x1075 s

Finally, a more realistic run was tested. A convective simulation was chosen which -
was viscosity-limited with the original explicit, forward-in-time diffusion scheme. The run
had no mean wind and, as in the previous run, U and V were initialized with the same
small random perturbations in all runs. All the previously mentioned runs have had zero
surface heat-flux, in this simulation the heat-flux was allowed to be non-zero. The run
had a horizontal resolution of 40x40 points and a vertical grid with 32 levels. The run
with the Mason scheme calculated the time-step by requiring that the maximum value of
C did not exceed 0.5. Figure 10 shows the results from the original diffusion scheme and
figure 11 shows the same resulting quantities, but from a run using the Mason scheme. —
It can be seen again, that the results are quantitavely very similar. The time-series plot
of energy in the model shows a very similar shape, with the model settling down at the
same general energy level, but with small, short term variations. -

The run-time statistics for these two runs are shown in Table 2.

Table 2
Run with Run with _—
Original Scheme Mason Scheme
Model Time at end of run 20 000 s 20 000 s £
Number of steps taken 97 500 42 600
Average time-step in run 0.2s 0.46 s
Total CPU time taken 305 h 16 h Il
CPU time per step 1.13 s 1.34s
CPU time per step per grid-point 2.21 x107° s 202x10 ¢ -
0

6 Conclusions kol sl )
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to have avoided the problem of instability with increased time-step, although further
investigation leads to the conclusion that the stability is retained only by a small effective
reduction in the time-step. This has the effect of producing a time lag in the diffusion
scheme with respect to model time. It was found that the time-step could be considerably
increased with only small errors resulting from the time lag. The results from the tests
we ran, suggest a time-step of order At = % was satisfactory. This is the maximum
limit for the time-step when using the explicit forward-in-time scheme. However, in non-
linear models using the forward-in-time scheme the time-step would be limited by other
possible instabilities in the non-linear terms and would, in fact, be very much smaller than
the limit. We will, therefore, save considerable computational time by using the Mason
scheme with the time-step limit of the explicit scheme. When running on a scalar CPU (a
single processor that only performs one command at a time) the execution time taken for
single time-step was about 20% to 30% longer than the forward-in-time explicit scheme
for the same number of grid-points. The time-step can only be increased in runs that are

limited by the viscous terms, and this increase is limited by the implied time lag. Even

with all these restrictions it was seen that in some of the runs that were carried out, the
execution-time was cut by as much as 50%.
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Appendix A

Stability Analysis for the Forward-in-Time Explicit Scheme

Re-writing Equation (2)

Ut = CUGL — 20U + CUZY + UL

— 2vAt
where C = s

Following the von Neumann stability analysis procedure (see Roache 1972, Chapter 3,

Section A-5-b) a Fourier series expansion of the solution to the above equation can be
written

UI: 4 AAnAtes'kmAZ

where AA"4¢ is the amplitude function of the time-level n of a particular component
whose wave number is k. The displacement in time and vertical distance are denoted by

the integers n and m respectively. Substituting this expression into the finite difference
equation leads to

L S (eikAZ 3 e-s'kAZ) ~9C 4+ 1
= 2Ccos(kAZ)—-2C +1

= 20X -2C+1
where X = cos(kAZ)

Stability or instability is determined by the decay or amplification of the Fourier solution,
therefore, stability requires that |A| < 1 i.e. |[A?| < 1. Which gives

Sl€20X -0 4121
The right hand inequality simplifies to X < 1 which is trivially true.

The left hand inequality reduces to <5 < X. The minimum value for X is —1 and

substituting for C gives

At At
—_— 1L y—
2v 7 1< -2v 7

which leads to At < 42,

The scheme is, therefore, conditionally stable on

AZ’
< _—
At




Stability Analysis for Mason Scheme

Equations (6), (7) and (8) reduce to

1
Uit = ogirao 71 (CUL + CULY + (1 + 200087 + QUL + C0LY)

— 2uAL
where C = N

Following the procedure above, we substitute Uf = AA"AtgikmAaZ

AR asé 2_6’2:}4_0—-{—-—1 (02 (ezikAZ g e-—zikAZ) ¥ (i¥20)4'e (eikAZ £ e—ikAZ))

|

= 902 +4C +1 (202 cos(2kAZ) + (1 +2C) +2C cos(kAZ))

= o (20%2X7 — 1)+ (1+20) +20X)

202 +4C +1
again, X = cos(kAZ)
1

= Soi o WPX* 490X +1 120 4 207)

Stability requires |A| < 1i.e. |A?| < 1. Which gives
—(2C?+4C +1) < 4C?X? +2CX +1+20 —20* <2C? +4C + 1
The left hand inequality simplifies to
0<4C?X24+2CX +2+6C
4C?X? +2CX + 2 + 6C has a minimum at 8C2X = —2C i.e. X = —L. Its minimum

value is, therefore, ¥, — ¥, + 24+ 6C = 6C + 13,. So the left hand inequality is true as
C > 0 always.

The right hand inequality reduces to 7
40?X?2 4+ 20X —2C -4C%*<0

Factorizing leads to (X — 1)(4C*X + 1) +2C) < 0. (X — 1) < 0, which requires
(4C*(X +1) +2C) > 0.This leads to X > —z& — 1 which, again, is true for all C > 0.

The scheme is, therefore, unconditionally stable.
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Appendix B

C..
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C..MASON SCHEME FOR * U-SOURCE *

C..

sk ok ok ok ok
DO 410 K=3,KKP-2
DO 410 J=JMINP,JMAXP

C..CALC COMPONENTS OF MATRIX

TMP11=(1.0/(2.0%DTM)) +
0.5%(VIS(J,K+1)+VISP1(J,K+1))*ECZA(J,K+1) +
0.5%(VIS(J,K)+VISP1(J,K))*ECZB(J,K+1)

TMP12=-0.5%(VIS(J,K)+VISP1(J,K))*ECZB(J,K+1)

TMP21=-0.5%(VIS(J,K)+VISP1(J,K))*ECZA(J,K)

TMP22=(1.0/(2.0%DTM)) +
0.5%(VIS(J,K)+VISP1(J,K))*ECZA(J,K) +
0.5%(VIS(J,K-1)+VISP1(J,K-1))*ECZB(J,K)

TMP23=-0.65%(VIS(J,K-1)+VISP1(J,K-1))*ECZB(J,K)

TMP32=-0.5%(VIS(J,K-1)+VISP1(J,K-1) )*ECZA(J,K-1)

TMP33=(1.0/(2.0*DTM)) +
0.5%(VIS(J,K-1)+VISP1(J,K-1))*ECZA(J,K-1) +
0.5%(VIS(J,K-2)+VISP1(J,K-2))*ECZB(J,K-1)

TMPA =(ZU(J,K+1)/(2.0%DTM)) +

SU(J,K+1) +
0.5%(VIS(J,K+1)+VISP1(J,K+1))*ECZA(J,K+1)*ZU(J,K+2)

TMPB =(ZU(J,K)/(2.0%DTH)) +

SU(J,K)
TMPC =(ZU(J,K-1)/(2.0%DTM)) +
SU(J,K-1) +
0.5%(VIS(J,K-2)+VISP1(J,K-2))*ECZB(J,K-1)*ZU(J,K-2)

C..SOLVE MATRIX

&
&
410

UVWTMP(J,K)=
(TMP11%(TMPB*TMP33-TMP23*TMPC)-TMPA*TMP21*TMP33) /
(TMP11%(TMP22*TMP33-TMP23*TMP32)-TMP12*TMP21*TMP33)
CONTINUE
K=2
DO 411 J=JMINP,JMAXP

C..CALC COMPONENTS OF MATRIX

TMP11=(1.0/(2.0%DTM)) +
0.5%(VIS(J,K+1)+VISP1(J,K+1))*CZA(K+1) +
0.5%(VIS(J,K)+VISP1(J,K))*CZB(K+1)

TMP12=-0.6%(VIS(J,K)+VISP1(J,K))*CZB(K+1)

TMP21=-0.5%(VIS(J,K)+VISP1(J,K))*CZA(K)

TMP22=(1.0/(2.0%DTM)) +
0.5%(VIS(J,K)+VISP1(J,K))*CZA(K) +
(VIS(J,K-1)+VISP1(J,K-1))*CZB(K)

TMP23=0.0

TMP32=0.0

TMP33=0.0

TMPA =(ZU(J,K+1)/(2.0%DTM)) +

SU(J,K+1) +
0.5%(VIS(J,K+1)+VISP1(J,K+1))*CZA(K+1)*2U0(J,K+2)

TMPB =(ZU(J,K)/(2.0%DTM)) +

SU(J,K)
=(VIS(J,K-1)+VISP1(J,K-1))*CZB(K)*UGAL
=0:0 : :




& (TMP11%TMP22-TMP21*TMP12)
411  CONTINUE

|
:
|
|
‘ K=KKP-1

DO 412 J=JMINP,JMAXP
C..CALC COMPONENTS OF MATRIX

TMP11=(1.0/(2.0¥DTH)) + B

‘ & 0.5*(VIS(J,K)+VISP1(J,K))*CZB(K+1)
|
:
|
|

TMP12=-0.6%(VIS(J,K)+VISP1(J,K))*CZB(K+1)
TMP21=-0.6%(VIS(J,K)+VISP1(J,K))*CZA(K) =
TMP22=(1.0/(2.0%*DTM)) +

& 0.6%(VIS(J,K)+VISP1(J,K))*CZA(K) +

& 0.5%(VIS(J,K-1)+VISP1(J,K-1))*CZB(K)

TMP23=-0.6%(VIS(J,K-1)+VISP1(J,K-1))*CZB(K)
TMP32=-0.5%(VIS(J,K-1)+VISP1(J,K-1))*CZA(K-1)
TMP33=(1.0/(2.0*DTM)) +

& 0.5%(VIS(J,K-1)+VISP1(J,K-1))*CZA(K-1) + =
& 0.5%(VIS(J,K-2)+VISP1(J,K-2))*CZB(K-1) '
TMPA =(ZU(J,K+1)/(2.0%DTM)) +
& SU(J,K+1) —
TMPB =(ZU(J,K)/(2.0*DTM)) +
& SU(J,K)
TMPC =(2U(J,K-1)/(2.0%DTM)) +
& SU(J,K-1) + W
& 0.5%(VIS(J,K-2)+VISP1(J,K-2))*CZB(K~-1)*ZU(J ,K-2)
C..SOLVE MATRIX
UVWTMP(J,K)= -
& (TMP11*(TMPB*TMP33-TMP23*TMPC) -TMPA*TMP21+TMP33) /
& (TMP11#*(TMP22+TMP33-TMP23*TMP32)-TMP12*TMP21*TMP33)
412 CONTINUE .
K=KKP

DO 413 J=1,31JP
C..CALC COMPONENTS OF MATRIX

TMP11=0.0 _ -
TMP12=0.0

| TMP21=0.0

| TMP22=(1.0/(2.0%DTM)) +

| & 0.5%(VIS(J,K-1)+VISP1(J,K-1))*CZB(K)
TMP23=-0,5%(VIS(J,K-1)+VISP1(J,K-1))*CZB(K)
TMP32=-0.6%(VIS(J,K-1)+VISP1(J,K-1))*CZA(K~1)
TMP33=(1.0/(2.0%DTM)) + - - :

& 0.5%(VIS(J,K-1)+VISP1(J,K-1))*CZA(K-1) +
& 0.5%(VIS(J,K-2)+VISP1(J,K-2))*CZB(K-1)
TMPA =0.0 £ =
TMPB =(ZU(J,K)/(2.0%DTM)) +
& SU(J,K)
TMPC =(ZU(J,K-1)/(2.0%DTH)) + L
& SU(J,K-1) +
& 0.5%(VIS(J,K~2)+VISP1(J,K-2))*CZB(K-1)*ZU(J,K-2)
C..SOLVE MATRIX
UVWTMP (J,K)= C
& (TMPB*TMP33-TMPC*TMP23) / |
& (TMP22*TMP33-TMP32*TMP23)

413 CONTINUE

DO 414 K=2,KKP Jhats ekt L fiain ,;;‘7 : o g
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Figure 3: The profile of velocity, U, from a simple one-dimensional constant viscosity model
using the fully implicit diffusion scheme at time t = 2Tp. A time-step of 4Ty was

used in the run.
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Figure 5: The initial vertical profiles for U and V used in the large-eddy model
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Figure 6: The verical profiles for U and V' from a pseudo-one-dimensional run of large-eddy
model using the original forward-in-time explicit scheme. The run is at ¢ = 20 000
seconds ""
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Figure 7: The vertical profiles for U and V from a pseudo-one-dimensional run of large-eddy
model using the Mason scheme. The run is at ¢ = 20 000 seconds
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