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Analytic solutions representing rectilinear flow in geostrophic and
hydrostatic balance are constructed using the conformal mapping technique

of Gill (1981). Two types of mapping are used to characterise the state of

a fluid after a parcel convects to a pbsition of neutral buoyancy. The
first mapping corresponds to the homogeneous intrusion in a rotating,
stratified fluid studied by Gill. The second mapping describes an internal
discontinuity of a finite length embedded in a fluid of uniform potential
vorticity. 1In the idealised physical problem represented by these
conformal transformations, an elliptical region of undisturbed fluid is
considered to be 'saturated' and in a state of unstable equilibrium. On

perturbing the system, the saturated parcel convects to a new level distant

from its initial position and is rendered homogeneous in absolute gggentuhffrr

and potential temperature by internal mixing. The res
configuration involves a two-dimensional ‘L“idsbeﬂameh s
the environmental stratification. An internal front is sh

the equilibrium flow structure in the region
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The model predicts mesosale regions.




the process greatly accelerate the formation of a lower tropospheric
frontal discontinuity line compared to geostrophic forcing such as
deformation. The model may also be relevant to the dynamical forcing of

mesoscale downdraughts associated with deep cumulonimbus convection

1 Introduction

Balanced equations of motion such as the semi-geostrophic system
(Hoskins, 1975) and the angular momentum coordinate equations (Shutts and
Thorpe, 1978) are conventionally used to describe flows which are
inertially and convectively stable at all times. Under these conditions
the ageostrophic circulation generated by dynamical or irreversible
physical forecing functions is determined by an elliptic equation subject to
the positivity of a pseudo-potential vorticity (e.g. Hoskins and Draghici,
1977; Shutts and Cullen, 1987). Ageostrophic motion provides the
continuous adjustment of the mass field required to keep the fluid in
geostrophic and hydrostatic balance. 1In adiabatic and inviscid
semi-geostrophic flow the pseudo-potential vorticity is conserved following
the motion and an initially stable fluid will remain so, (Bennetts and
Hoskins, 1979). The presence of heat sources and sinks may however reduce
the potential vorticity to zero rendering the equation for the ageostrophic
motion parabolic, and the problem ill-posed (Thorpe and Emanuel, 1985). The
breakdown in the balanced flow method associated with the onset of
convection demonstrates the problem and how it may be circumvented with the
introduction of some extra physical assumptions.

Consider as in Fig. 1(a) a vertical fluid column comprising five
elements each of uniform potential temperature 8;. The fluid
column will be stable provided that the elements are ordered so that:

8-1+1 >61 i=11 .
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If the fluid is incompressible, the elements may be heated or cooled

without causing any motion provided that this ordering is maintained.

Suppose now that an impulse of heat energy is offered to element 1 so that:

By < 01 < 65.

The fluid would now be in a state of unstable equilibrium corresponding to
negative potential vorticity in the rotating continuous problem. 1In
practice, the system would create convection which would transfer fluid in
element 1 to between element U and 5 and cause a certain amount of mixing

bet
ween elements. A new balanced hydrostatic state would ultimately be set

up after transient motion is damped out by viscous effects

I 3
nstead of abandoning any hope of solving the physical problem when
th : : :
e static stability, proportional to (ei+1 = 83), approaches zero we 1d
’ ] cou
extend our class of solutions (trivial as they are in this example) by

assui i
ming that the fluid undergoes an instantaneous rearrangement to the

state depi i
epicted in Fig. 1(b). Although the introduction of a heat impulise

i ; :
S unphysical, a similar effect would be realised if element 1 were

sa
turated and contained enough moisture to allow it to convect up to th
e

sam
e level. The rearranged state could only be achieved if no mixing
oc
curs. This will never be the case in the real world though under some
s
ituations it may be a useful idealization. For instance, tropical

1958) without significant mixing with the environment

A non-trivial extension of this heat impulse thought-experiment is

provided by its two-dimensional generalisation. Consider a parcel
representation of an atmosphere at rest such that each parcel is
rectangular in cross-section and has a uniform absolute momentum, M

(= Vg * fx, eg Gill (1981)) and potential temperature, 6. In the 100
element representation depicted in Fig. 2(a), rows of elements have the
same potential temperature and columns have the same absolute momentum.
Interfaces between neighbouring elements satisfy a Boussinesq form of the

Margules equation for the slope of a frontal boundary:

dz £iM]

dx gl%4 1
(o]

where the square brackets denote element differences, f is the Coriolis
parameter, g is the acceleration due to gravity and 6, is some constant
reference potential temperature. 1In this case dz/dx equals zero or
infinity corresponding to horizontal or vertical edges respectively. If an
impulse of heat is introduced into element 30, sufficient for its potential
temperature to be raised to a value between that of element 50 and 70, then

a new equilibrium may be sought for which element 30 lies between the

isentropic layers containing elements 50 and 70. During this convective

transfer it will be assumed, consistent with two-dimensionality (into the
picture) and the non-mixing hypothesis, that the absolute momenta and areas
of all elements are preserved. Also the potential temperature is conserved
for all elements except element 30. Using the 'geometric' algorithm
described in Cullen et al (1987), a final equilibrium state may be
calculated, (Fig. 2(b)). Elément 30 now appears as a lens of fluid

squeezed between two isentropic layers and elements 29 and 31, which were




originally separated, are brought together. Note that all fluid interfaces
satisfy Margules relation in this final state. Elements in the two
isentropic layers above and below the lens are forced away from the centre
of mass of element 30. Since M is conserved before and after the
convective jump, anticyclonic vorticity is created above and below the
lens. On the contrary, elements in the 'donor' layer move towards the

original position of element 30 conserving M and therefore create cyeclonic

vorticity.

The lens is reminiscent of the analytic structure of a homogeneous
intrusion embedded in a uniform potential vorticity fluid found by Gill
(1981). 1In this paper, analytic solutions are provided which model the
lens, and the flow in the region from which the fluid convected. Solutions
are obtained for a variety of different initial states and représent the
complete 'before and after' equilibrium states associated with convection,

provided that the lens is sufficiently far removed from the donor region,

23 Two-dimensional upright convection

(a) Gill's lens solution

It is convenient to express the conditions for geostrophic and

hydrostatic balance in the form used by Hoskins and Bretherton (1972) so

that:
fv - 1)
£ 53 (1)
g8y =i:99 ,
and eo - = (2)

where ¢ is the geopotential and z is a pseudo-height coordinate depending

on pressure alone. In this analysis it is expedient to make what Hoskins
and Bretherton refer to as the Boussinesq approximation by setting their
pseudo—~density r(z) equal to unity. Air parcels are then volume preserving

in (x,y,z) space. The thermal wind equation derived from eqs. (1) and (2)

is then:

oV 98
Veki S, (3)
9z 8y ox

The Ertel potentiai vorticity (q) for rectilinear flow governed by egs. (1)

and (2) is given by:

Weucolraiei Pranll?
R 9% ) 9z s R
¥ M, 8 (1)
= J ( .77 )

where J denotes the Jacobian of transformation between the space of (M,8)

and, (xs2Z)i

Eqs. (1)-(3) are now non-dimensionalised using H as a height scale,
; 2
NH/f as a horizontal length scale, NH as a velocity scale, N Heo/g as a

potential temperature scale ands N2H2 as a geopotential scale to give:

_ 9% (5)
T 9x
_ 9¢ (6)
Bom 9z
gy e (7)
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8




implying that the complex variable W = x + i@ is an ana1ycie,angg;55¥§§gﬂggt§~,:

Y =M+ iZ; or W = W(Y) represents a conformal mapping between the W and ¥

planes. In the physical context of the penetrative convection prqblqm;.;*v

4

considered here, one particular mapping is of central importance. This ;s

i b e

given by: S

; ; aM 38 W = Cosh [Sinh~1(Y)] (15)
gl and A respectively (9)

Gill noted that eq. (9) may also be expressed in the Jacobian form:

ity Q;_;J) - (10)
6, 2

| ~ If M and Z (capital used to denote that z differentiation is taken at

and as will be shown later, it has the property that the 6 = 0 and M = Q_

isopleths coincide on a circle in the (x, z) plane. It also hasvth3_33i4 A

property that as |Y| + o W=+YorM=+xand 6 * z which represents a o1 s T

horizontally stratified atmosphere at rest.

_constant M) are adopted as independent Fartinies then eqs (8) and (10) may

j $
|

&
=

elliptic coordinates so that:

(11)

Y = Sinh ¢ where ¢ = « + iB

(12)

Eqs (11) and (12)
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which on expansion of Cosh and equating real and imaginary parts gives:

Cosh « Cos B an

>
]

Sinh « Sin B .

D
L}

Note that eqs (16) and (17) imply that M and 6 equal zero on the circle

x2 + 22 = 1 where « = 0. The solution will be assumed only to describe the
flow outside of this unit circle. Within it we assume that M and ¢ are
zero so that the interior satisfies the thermal wind equation (9) but has
zero potential vorticity. The isentropes and v field corresponding to this

solution are depicted in Fig. 3 (a) and (b) respectively.

This circular lens (though elliptical in dimensional (x, z) space) may
be thought of as having been produced by the injection of fluid with M and
6 = 0 into a horizontally-stratified atmosphere at rest, without mixing

For convective and inertial stability the lens must be centred on the

origin.

In the thought experiment envisaged here, the injection of lens fluid
corresponds to the arrival at the origin of fluid from a non-entraining
two-dimensional convective plume as illustrated schematically in Fig. 4. In
the atmospheric context, air arriving in the lens from below is assumed to
have suffered internal mixing so as to homogenize the ® and M fields. The

mass flux in t
his convective plume is imagined to emanate from an initially

saturated
region of the horizontally-stratified atmosphere at rest The

complementary pro
Y problem to the homogeneous intrusion therefore concerns the

mass sink
from whence the convective plume originated What is the

1

equilibrium configuration corresponding to the removal of a certain volume

of fluid under the assumption of no mixing and two-dimensionality? A

special case of some interest is represented by the conformal mapping to be

discussed in the following section.

(b) The discontinuity mapping

Consider the following conformal mapping:

W=/, {y + /A2 - 0%} (18)

where D is a real constant. For large |Y| it can be seen that W ~ Y so
that the solution tends to the basic state as in the previous example. The
square root term requires the definition of a branch cut on the real axis
of the Y-plane which will be taken here to join the branch points at

Y = + D, (Fig. 5). Computation of corresponding points in the W and Y

planes is facilitated by the introduction of polar coordinates about the

branch points, as in Fig. 5, so that:

Y - D =ry exp(idy)

A
and Y + D = ry exp(idp) with -w {2 <

Eq. (18) may then be written as:

x +i8 = /5 [M + iz + /Fqrp - {Cos /5 (A + Ap) + i Sin /5 (A + 22)}]

12
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On the other hand, case (iii) requires that:

ad B2 mapen »

;x -_.1/2 [M + /rqr, Cos 1/2 (A +22)] (19)

f

£ |

{ ry =D-M ro=D+M :
o = 1_/2 [z + /rqr3 Sin 1/2 (A + 22)] (20)

Foy

so that: e 2 14

Consider now the variation of 6 along the z = 0 axis for the following

three cases:

0 =7 175 (02~ M2)V/2,,

By the same considerations using eq. (19): Soem masa

- branch cut

(i) i i 1/2 [M x5 (MZ S D2)1/2]

x =1/, M+ (M2 - p)1/2]

2

- #

will be m (above M-axis on negétive side),

!@Q:)v.‘érfﬁ;('im positive M-axis) all 1mply1ng£v;r and (iii) x = ‘1-/2' M. The branch cut therefor

discontinuity line of length D in (x, z) .

computed from eqs (19) and (20) and QPG«QQQ}%&Q

e
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Eqs (21) and (22) describe the 6 = M relation around the discontinuity

d ts an ellipse whose equation is: which is an ellipse with major axis along the 6-axis. Therefore, depending
and represents :

on the orientation of the major axis of the elliptical region from which

fluid is extracted, one may get a horizontal or vertical discontinuity
4 92 + M2 = D2

(Note: the scale of the vertical axis is f/N times that of the horizontal

axis in physical space).
Within this ellipse are values of (M, 6) that are 'missing' in physical

Space. To create from a horizontally-stratified atmosphere, a flow field
! The lens and discontinuity mappings therefore constitute the mass

whose structure is given by eq. (18), fluid must be removed from the region

source and sink required to describe convection as a forced mass transfer
of physical space corresponding to this region in (M, ) space (ie within

process. The two solutions are exact if treated separately though are only
the ellipse (4 22 + x2 = D2). The fluid particles at the boundary of this

approximate when combined: the degree of approximation depends on how close
ellipse would converge onto the discontinuity line on removal of the fluid

i the lens and discontinuity are. A 'joint' mapping having the property of

simultaneously representing a homogeneous lens together with a

noting that z + iM is an analytic function of i i ti
® + ix and by writing:
. field obtained by superposing the lens and vertical discontinuity solutions

so that the lens has a potential temperature of 9 units compared to zero in
z+iM=F (9 + ix)
the isolated case of (a). This represents the equilibrium state after air

within the half-ellipse (4 x2 + z2 = D2, z > 0) has convected 9
NEsre PTG 1/2 [Y + /Y2 - D2] as vefore.

non-dimensional height units in the vertical whilst homogenising M and 6 in

the process. Obviously, the area of the half-ellipse must equal the area

It is easily seen that this i i i
mapping gives a vertical discontinuity line of the lens to be consistent with the continuity equation. D has been

across which M is discontinuous rather than 6, (Figs 7 (a)-(e)) The 6-M

relation on the discontinuity line is now given by:

chosen so as to enforce this constraint.

NM2+92=D2

15 16 |
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The foregoing convection problem can also be analysed in a and ax - bz = M

~environment of uniform potential vorticity. In this context M

convection to orient itself quasi-horizontally from which one can infer that:

i e ihade and v=M-x=(a- 1)x - bz
i :

i

it

‘;?, ;The”QSMQhI%R@eyaﬂghgguationa-(13) and (14) may be generalised so

A homogeneous lens of fluid embedded in this flow is g;ven,b;}the

WIIHISeNR

mapping:

s i P £ el s
3 §5

Cosh [sinh™1(Y)]

£t ?{_(» &k

,3ﬁ'?”ﬁﬂﬁfﬁ;fr; i (23)

ax - bz + i (a@ + bM) =

with Y = M + iZ. Again using elliptical coordinates «
E e A LM A o




Along the frontal discontinuity

(25) gives: a0 it M, 5 Al B0 TRy Bies

il R A

ax - bz = Cos B and ap + bM = 0

z = 1/ (ap + bM) 3 4940 bnggaiee.

- >

from which it can be deduced that 6 and M are zero on the ellipse

and M = 11/2 V62 = stadie ijE'- 11/2 VD2 - 4z2 K 0N o

(ax - bz)2 + z2 = 1. Figs 9 (a) and (b) show the potential temperature and

ophic wind in the vicinity of the lens whena =1, b = -1,

where the sign depends on whether one is above or below the branch cut.

S TG

The ends of the discontinuity line are located at the points

¥ “Q

?ront.al discontinuity

i o

-bD =D st SN0 E BEEouaitias i
5 @3 an Es in the (x, z) plane

Mg s

scontinuity mapping F(W) = 17,00 + YW@ - D2] where

s

;j15 \(ax = bz). eq. (25) implies branch points at ap i i 8‘“"!3%”

The 6-M relation around the discontinuity is given by eqs.) (29) and

on the branch cut (the equation of the frontal

i3
l'!
gtaﬁ o

(30) and can be written as:

4 M2 + (ap + bM)2 =

‘outside of tnts;_;‘elﬁque (’H"‘a*) ‘spa

V% LT “’k‘b‘s\x‘f cm, Al




By adopting a polar coordinate representation about each branch point

in the (ae + bM, ax - bz) plane as in section 2(b),it is possible to fing
sets of points (x,z,M,8) which satisfy the conformal mapping equation, Iy
this way a search can be performed numerically to find certain 6 or M

values and plot their isopleths in the (x,z) plane. Fig. 10(a) and (b)

show the resulting 6 and v contours for the frontal discontinuity with a =

15 b =~1.

8 and v are both discontinuous across the 'front' and Margules'
formula is satisfied there. To show this we note that the equation of the
front is ax - bz = 0 giving a slope of a/b. Now, eq. (29) implies that ag
+ bM is continuous across the front or
ale] + b[M] = 0. This can be written as the non-dimensional form of

Margules' equation:

gz . 8 (M}
s Ty o P that (6] and [M] are consistent with

the frontal slope a/b.

A convenient property of this mapping is that the quantity a6 + bM is
equal to zero at z = 0 in the basic state and in the discontinuity
solution. Since 8 and M are conserved in our thought experiment, fluid
initially at z = 0 will remain there after the elliptical region of fluid
given by eq. (31) is removed. Therefore, as in the upright convection
cast, it is permissible to think of z = 0 as a rigid surface (or the

' 1
ground') and only consider the removal of the corresponding upper half

ellipse of fluid, (Fig. 11).

21

The lens and discontinuity solution may now be put together és an

tafter state' by assigning a value of ©® to the lens fluid (say, 68x). If
the lens and discontinuity are sufficiently well separated the two
perturbation responses may be linearly superposed in physical space giving

a potential temperature field as in Fig. 12.

These analytic solutions suggest that slantwise convection embedded in
a zone of enhanced temperature gradient could create a front (as a surface
of discontinuity extending from the ground) on the time scale of the

convective mass transfer itself. Such issues will be discussed more fully

in Section 4.

e 17 Mass displacement

Since M and 6 are conserved during the mass adjustment from the
initial to final state it is possible to calculate the vector displacement
field required for the geostrophic adjustment of the non-convecting fluid.
Fig. 13 shows the displacement vectors for the upright convection case
portrayed in Fig. 8. Fluid on the half-ellipse (4 x2 + 22 = D2, z > 0) in
the initial state converges on to the upright discontinuity line.
Mesoscale descent is also forced over a horizontal scale of the Rossby
radius of deformation based on the thickness of the lens. As before

displacement vectors of the two separate analytic solutions have been added

implying a small (though negligible) error.

22




Displacement vectors have also been obtained for the slantwise
convection case corresponding to Fig. 12 and show the preference for
mesoscale descent along the basic state M surfaces, (ie. opposite to the
direction of slantwise ascent by the convecting fluid) (Fig. 14). 1In both
this solution and the upright convection case, mesoscale ascent occurs
above the lens with a maximum in the M surface which intersects the lens,

The displacement vectors associated with the convection itself are not

shown.
y, Discussion

The analytic solutions of Section 2 and 3 represent the geostrophic
and hydrostatically balanced equilibrium states attained after an absolute
momentum conserving rearrangement of mass is brought about by convection.
The whole process may be regarded as an extreme example of the geostrophic
adjustment problem studied by Rossby (1938) and reviewed by Charney (1973)
and Blumen (1972). Conservation of potential temperature, absolute
momentum and potential vorticity in the 'environment' fluid coupled with
known values for the potential temperature, absolute momentum and mass of
the homogeneous fluid which has undergone convection, uniquely determines a
final equilibrium state. In the thought experiment envisaged here, a
two-dimensional basic state atmosphere with uniform potential vorticity is
imagined to contain a saturated elliptical region in a state of unstable
equilibrium with respect to buoyancy generated by latent heat release. This
region of saturated air convects to its new equilibrium position on the

as
sumption that internal mixing homogenizes the absolute momentum and

potential temperature.

Before the convection takes place the saturated air

23

has convective available potential energy (CAPE). In the limit of an
infinitesimal mass of saturated air, the CAPE is equal to the positive area
between the environment and parcel curves on a tephigram in the usual
sense. If a finite volume of air convects so that its volume-averaged
thermodynamic state variables follow the same path on the tephigram as the
infinitesimal parcel, then a certain fraction of the work done by the
buoyancy force is expended on adjusting the environment into a new state of
thermal wind balance. All of the kinetic energy released during the ascent
of an infinitesimal parcel during convection is ultimately lost through the
radiation of internal gravity waves and viscous dissipation. On the other
hand, a finite convective mass transfer will lead to the creation of a
balanced wind field in the vicinity of the level of no buoyancy and less
energy will be radiated away as gravity waves, (Charney, 1973). Of course,
these are properties of convection in a rotating system; without rotation
isentropic surfaces are horizontal in the equilibrium state and the problem
reduces to the vertical column model of Section 1 with continuous

stratification.

The treatment of convection as a forced mass transfer process has also
been investigated by Gill et al (1979) in the context of bottom water
creation by surface cooling of the Greenland sea. Their model was
axisymmetric and composed of two homogeneous fluids representing well—-mixed
and deep water layers. The effect of surface cooling was mimicked by the
instantaneous conversion of well-mixed water to deep water thereby creating
an effective mass sink in the upper layer and a source in the lower layer.

Conservation of angular momentum in the process then demands that a cold

24




dome of bottom water should form with anticyclonic rotation. Convergence

in the upper layer creates cyclonic relative vorticity analogous to that in

the discontinuity solutions given here.

The forced mass transfer models of upright and slantwise convection
given here are clearly very idealised and are not amenable to quantitative
comparison with observations. For instance, evaporational cooling of air
into which precipitation is falling is an important effect which would make
a substantial impact on the type of equilibrium structure that might result
after convection - particularly for upright convection. Mixing and
surface/boundary layer friction are also likely to modify the structure of
the 'after-state' in a quantitatively important manner, though to what
extent is not knéwn. It should be remembered that the solutions given here

are two-dimensional and therefore the upright convection solution only

makes sense in the context of squall lines and the geostrophically—balanced-

state accompanying them.

With these restrictions in mind, we note that a familiar feature of
tropical squall lines is the appearance of a mesoscale downdraught
underneath the cirrus anvil and the descent of mid-tropospheric air to the
surface. (Zipser, 1968; Houze, 1977). Whilst this is in part due to

e
vaporational cooling of precipitation into air below the anvil, Miller and

Bet
ts (1977), showed that the descent could be dynamically induced on the

mes “
oseale (100-500 km) consistent with our forced mass transfer picture.

Even
80, it is not clear how realistic the lens model of the convective

25

after-state is, particularly since the geostrophic adjustment time would be

of the order of one day at the latitude of the squall lines in the Houze

study.

The slantwise convection after-states of Section 3 are more likely to
be of physical relevance since the two-dimensionality requirement is
naturally imposed by the straightness of the flow in frontal zones. The
solutions suggest that a front could develop in a baroclinic zone on the
time scale of slantwise convective mass transfer even in the absence of
deformation by the synoptic scale flow. This would happen as a finite mass
of moist saturated air initially in contact with the ground ascends to a
new convectively stable position along the relevant M surface. The vacated
space is filled in such a way that air parcels with different absolute
momenta are brought into contacts at a frontal discontinuity line extending
from the surface. Subsidence tends to occur along the M surfaces of the
basic state except near to the lens or discontinuity. Ascent is forced

further up the M surface which intersects the lens.

Unfortunately, support for this picture is very difficult to infer
from existing observational studies of frontal circulation for a variety of
reasons. Apart from the natural richness of detail in observed fronts
associated with the confluence of airstreams of varied origin, slantwise
convection must be expected in frontogenetic zones where ageostrophic
circulations already exist. Therefore, Fig. 12 could be regarded as the
component of the ageostrophic velocity field associated with continuous
slantwise convection embedded in a developing front. Since the classical

dry model of a front (Hoskins and Bretherton, 1972) involves ascent in the
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warm air and descent in the cold air, the superposition of this
ageostrophic circulation due to slantwise convection implies weakened
ascent in the warm air and strengthened descent in the cold air. The
slantwise convection itself could be thought of as a narrow plume of
rapidly ascending air joining the lens to the discontinuity. Emanuel et 3]
(1987) have shown that in a two-dimensional Eady wave model in which all
ascent (descent) is saturated (unsaturated), the scale of the ascent
decreases to zero as the moist potential vorticity (based on the equivalent
potential temperature) tends to zero. This limit is equivalent to allowing
the stability measured in absolute momentum surfaces to tend to zero. Fronm
this viewpoint their results support the 'plume' mode of ascent enviéaged
here though strictly speaking the model presented in this paper gives no

explicit information about this.

The case study of Ogura and Portis (1982) provides some observational
support for a shallow ascending plume of boundary layer air embedded within
a region of descent. In a frontal zone containing vigorous convection they
found descent and an associated cloud-free zone ahead of the surface cold
front and rapidly sinking cold air behind the front. In less extreme
convective situations where the mode of ascent is still convective but

slantwise, one might expect weak ascent in the warm air and strong descent

in the cold air.

The i 5
S€ speculations lead us to a veéry lmportant question concerning the

dynamical nature of the ascent at cold fronts. That is, 'Can slantwise

convection :
proceed as a quasi-steady component of frontal motion or does

t
he ascent occur under weak slantwise stability? (Thorpe and Emanuel
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(1985)). Although both processes could be under the control of
synoptic-scale dynamical forcing (eg geostrophic deformation) the former
mode of behaviour releases slantwise convective available potential energy
(Emanuel, 1983) from the system and could give rise to a qualitatively
different type of response to that when the slantwise stability is
positive. Furthermore,it is not clear what might happen to the unbalanced
kinetic energy released in slantwise convection. It could be dissipated
locally in turbulence and/or radiated in inertial gravity waves during the
geostrophic adjustment process or a substantial proportion of it might be
injected into the balanced flow (eg the jetstream) as a kind of organised
convective momentum transport. This would necessarily involve a
three-dimensional motion field in which absolute momentum was not conserved
following the motion of air parcels. Green et al (1966) suggested that
Trade wind boundary layer air could ascend to the upper troposphere at cold
fronts in mid-latitude weather systems and that the speed of the jetstream
into which the air is injected could be related to the release of potential
energy along the trajectory (see also Betts and McIlveen, 1969 for an
important correction to their analysis). Their theory supposes
frictionless ascent without any energy being lost in the geostrophic
adjustment process in contrast that predicted by the simple models given

here.

The level of energy loss associated with convection could have an

important bearing on the evolution of baroclinic weather systems and hence

the weather forecasting problem.
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The analytic solutions of Sections 2 and 3 are obviously very specia]l

cases of balanced solutions before and after convection and only provide ap
jdealised picture of the type of response one might obtain for more
realistic initial flow states. Solutions for general piecewise constant
data can be obtained using the geometric algorithm described in Cullen et
al (1987) and illustrated by the example in the Introduction. In the dry
case, their technique involves rearranging a finite number of parcels or
elements into a symmetrically stable equilibrium state whilst holding
constant their absolute momentum and potential temperature and is based on
theorems given by Cullen and Purser (1984). The method can be extended to
the moist case by rearranging all unsaturated parcels at constant potential
temperature and all saturated parcels at constant equivalent temperature.
On saturating, some parcels may convect to a higher level depending on the
environment curve they 'see' on a tephigram plotted at constant M. Details
of this methed and some applications will appear elsewhere in the

literature.

B Summary

Analytic solutions have been obtained which describe the
two-dimensional balanced state of the atmosphere after an idealised form of
convection has taken place. This convection involves the transfer of a
certain mass of fluid from its initial undisturbed position to a level of
neutral buoyancy whilst conserving absolute momentum. The fluid is assumed
to internally mix during the convection but causes no entrainment. In the
final geostrophic and hydrostatic equilibrium state, the convected fluid

occupies a lenticular region of width N/f times its depth. The lens itself
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has zero absolute vorticity consistent with the hypothesis of internal
mixing of absolute momentum. Fluid at the periphery of the elliptical
region of fluid which undergoes convection, pinches together to form an
internal discontinuity in the balanced, final state. When convection takes
place in an atmosphere with a pre-existing horizontal temperature gradient,
a front is formed. Since the parcel's absolute momentum is conserved this
is simply slantwise convection. The solutions suggest a zone of mesoscale

forced descent about the M surface corresponding to the absolute momentum

of the convecting parcel.

A fundamental question brought into focus by this work is, 'To what
extent is the non-entraining model of slantwise convection valid? Since it
is still not clear how prevalent slantwise convection is in real
atmospheric fronts, this question, along with many other must await

observational field studies with high spatial resolution.
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