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1e Introduction

This Technical Note describes a part of the work being undertaken in
Met O 11 tg look into the numerical treatment of discontinuities in the
atmospheree The development of these discontinuities (e.g.'fronts) can be very
complexe Here we look at a much simpler case: the formation of hydraulic
jumps in a one-dimensional, rotating, homogeneous, inviscid, one-layer fluid.
This process is dependent upon two non-dimensional parameters, the Rossby number,
R = %L s and tlrfe Froude number, F =U/(thm)’i , where U and L. are the
initial velocity and length scales, t'?m is the mean height of the fluid and f
is the Coriolis parameter (Williams and Hori (1970), henceforward referred to
as WH)e Because the systenm rotates, there is a limiting initial scale be&ond
which jumps do not fdrm, unless the time scale is greatly increased. If there
were no rotation present a hydraulic jump could arise from an initial state

having any horizontal scalee.

This model may have direct application to various mesoscale phenomena in

the atmosphere, which it is claimed are analogous to hydraulic jumps (eege

squall lines), as well as to internal waves in the ocean (WH)e All of these
phenomena are affected by rotation, but the influence is not dominant as it is

for large~scale motionse

Our aim was to see whether current numerical methods (ie, finite difference

(F.D.) methods) used in numerical weather prediction models correctly handle the

~evolution of discontinuities (in, for example, wind and potential temperature)

that may form within a model or may already be present in the initial state.

Here, in our simple one-dimensionél model of hydraulic jumps (with discontinuities
in fluid height and velocity), we have usgé.a special one~dimensional method

(the Random Choice Method (RCM)), with which to compare the F.D, methods. This

method can be. proved to converge to the physically relevant solution of many



systems of one~dimensional equations under certain restrictions on the data
(Glimm (1965), and many later papers)e It has recently been shown (Marshall
and Mendez (1981), henceforward referred to as MM) that the evolution of one-—
dimensional jumps without rotation can be modelled numerically very well using
the RCM, due to the method's ability to track discontinuities and to the fact
that it does not require any artificial viscositye. Here we have adapted the
method to include rotation and shown the convergence of it in this case; we

have then treated the RCHM solution as the correct one.

Thus, we have basically produced two numerical models based on the shallow
water equations, including rotation: one utilising the RCM and the other using
conventional F¢D. methods. These were then used firstly to carry out a comparison
run with R) = 0.1 and F = 1.0, in which the formation of jumps was severely
delayed by the high rotation rate, in order to check the RCM against the FeDe
methods. For this smooth solution the FeDs mddel is known to converge to the
correct answer, As a further check we compared them both with an identical case .
from WHe We then reproduced and extended some further results from WH for a
case where a jump formed (Ro = 1.0, F = 120): They carried their integrations
forward only to the point of jump formation, the criteria of which they were
interested in, whereas we continued beyond its férmation to compare its evolution
in the two differént models. Artificial diffusion was added to the FeDe model,
in order to inhibit the growth of the spurious oscillations produced behind the

Jjumpse

The two models used the shallow water equations
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where ¢ . 3‘4 ’ h = depth of the fluid, and the three variables ¢, V°

and ¢ were independent of G

2e The Random Choice Method

In the RCM the solution is constructed by assuming initially piecewise
constant data and solving exactly for one time~step. The new field is no longer
piecewise constant, and so a piecewise constant field has to be constructed
from it by a sampling technique. The method evolved from Glimm®s constructive
existence proof (Glimm (1965)) and was developed by Chorin (1976) for solving
non-linear, hyperbolic systems of conservation lawse Recently MM have used it
to solve the one~dimensional shallow water equations without rotation.

' " 2 whoof . 8 wY i)/

The RCM is a two-step method, and in order to find ¥, [¥ ‘.‘."(("'"3)5”;{"* {3}‘35’/

and define the method, we consider a system of conservation laws

(74 o -
és’{ + g’;c f(&().. © ., At time €,=n A€ s the method approximates

the solution & (=<, '6,,) with piecewise constant data
y(x'ﬁ*) = « x > (c+X)asx
e : o & (c+%)ax=x ,
where c¢Axe & 2¢ £ (+1) A2 (see Fige 1)s This defines a succession of
Riemann problems (one for each intermediate point (é+ dax )¢ which
are to be solved exactly to give the solutions U (=, Cavig ) at time

(¥ Y5 ) At . These new solutions are then sampled randomly to obtain
the values for the intermediate points, midway between grid-points, (iv !’a Jax .
For each Vinterva.l Lcasx, (i-!- D)AJ‘J let & e the‘ value of a random
\‘rariable e ¢ equidistributed in E-,%—,% J’ and let @ be the sampling point
(e Va+ 8:) A 3 then Q(Q,{-M,J is the value of the solution of the Riemann problem
at B . This is the value which is then ascribed to @ at the point (iv 4 )Ax ,
at time €., = €, +4% , ie. 9&:*: = d (ﬁ;, i) o Thus, we have
advanced the sqlﬁtion forward by half a time-step to - *,".gi e With a similar

procedure it is then 'advanced from "&M,‘ to t,w, (the second step) to give
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the values of « at the grid-points after one complete time-step, ready to

repeat the whole process again and proceed in {imee.

The method depends on being able to solve the Riemann problem exactly.
Chorin (1976) modified an iterative method due largely to Godunov (1959) for
this purpose, in order to solve the system of equations for gas dynamics utilising
the RCMe In MM they made use of the analogy between the equations of the isent¥opic
flow of a perfect gas with constant specific heat (iece with ¥ = 2) and the shallow
water equations; thus enabling them to use the Chorin-Godunov iterative method
to solve the Riemann probleme This they did for the case of a breaking dam,,
which produces a bore (or jump) travelling downstream and a depression wave

moving upstreame

The system of equations sclved by Marshall and Mendez was the one-dimensional

shallow water system without rotation

v @ 2}
B (gt
3¢ + I = o0

€ 0% (5),

where v = éu e To incorporate rotation into this model we include the second

horizontal momentum equation and the Coriolis terms, to give the system (1),.:62),

(3)e This system as it stands cannot be solved using the RCM, so it was solved

by a splitting method, first solving
d P 2 M=
.sm't i v (% * ¢ ) - © (6)y
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which were solved using the RCM; and then adding on the Coriolis terms. Thus
we were able to use the Chorin-Godunov iterative procedure (as used in Mif) to
solve equations (6) and (8) (which are the same as (4) and (5)) for m and @,

and thence solve (7) separately for v, since this equation is uncoupled from

the other two.

To make use of the gas dynamic analogy (following MM), let /‘D=fwh (9),

where P is the density of water and o is the analogous "gas" density;

and let the integrated pressure, P = IJ.DP'J} =fh:g‘}°~3 dcg‘ (using
the hydrostatic assumption) % P = 3}9%}” (10); ie. the relation
between pressure and density for this "&=law gas" is P= A/z (10a), .
where A= }Af’w and ¥ = 2. Tohen the equations (6) and (8) beccme
g + % (% +¥F) =0 G0

e S
(z.vherem-‘-'}ou); which are identical to the equations of isentropic flow of a =~ ~

perfect gas with constant specific heat. In this analogy the depth of the

water plays the role of the density of the gas.

System (11), (12) can be written as

o«

5e t nf =0 (13)
where « = (;) and ("3}, e Afﬁ) Erivony equivalently,

2 2¢
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the slopes ( J’Z[t ) of the two families of characteristic lines c;: ,

where S This enables us to obtain

(9. 7 2Af;(5_;.)) . ;

which are given by the eigenvalues of 8 sy Ay = @0t oc ~ where

5=




v ;
is the sound speed. After MM  the system (4), (5) can be

e = (285,)

changed to

.

‘/z '

where c ™ (3‘ h) (analogous to the sound speed in gas dynamics) is the speed
of propagation of small disturbances relative to the fluid velocity, and
3—3 =utde . The J+ are called Riemann Invariants and are constant
along the characteristic lines C_t . When characteristics of the same
family intersect a discontinuity is formed, wnhich moves with a speed ¢ given
by the jump conditions ( sC ';'-J = [F(‘:‘)J s shspe Lesed indicates

& the change in a quantity across the discontinuity) and the Hiemann Invariants
are no longer of a.ny use. The jump conditions (and the full Rankine-Hugoniot
conditions for non-isentropic flow) are obtained from the integral forms of the

equations (Chorin and Marsden (1979)).

Returning to the solution of the Riemann problem, we now consider system

(13), with the initial data wix,0)=S =(€p.) %56,
=Se E(pp,ep) X220,

S:_ and Sn indicate left and right initié.l states respectively, separated
by a slip-line with o2t = ¢ « The solution at later times will consist
of three states @ 51 A P a centfe state S,:()p*,u,,), separated by
two (centred) waves (since there are two eigenvectors for matrix B ), which
may be either shocks or rarefaction waves. In our shallow water equation
| analogy, the shocks are replalced by hydraulic jumps and the ra.refaction fans by
‘ depression waves, with the prqfiles of water height the same as the density‘profiles

of Fig. 2. Figure 2 shows one of the four possible combinations of waves, with

a shock wave travelling to the right (positive se-direction) and a rarefaction
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wave moving to the left. The three other possible combinations of waves (dependent
on the initial conditions) are either two (compressive) shock waves, two
rarefaction waves, or the situation opposite to Fig.2 with the shock moving to

the left and the rarefaction to the right. Other possibilities, for instance

connecting 9, to ‘S'* (in Fig. 2) with a rarefaction shock whose speed satisfied

the jump conditions, are forbidden by the entropy condition and do not exist in
nature. 'The entropy condition is needed to pick out the physically relevant
solution, because weak solutions of conservation laws are not uniquely determined
by their initial values. It requires that the fluid crossing a shock suffer an
increase in entropy. Its shallow water analogy is the energy condition, which
requires that fluid crossing a jump suffer a loss of energy, ie particles only
move across a jump from a region of lower total depth to a region of higher

total depth.

We now return to the Chorin~Godunov iterative procedure for the system (11),
(12) together with equation (10). To solve the Riemann problem we need to

evaluate @y and P,., (or jﬁ;, ) in the centre state -S:‘. We define the quantiiy

M‘_= (R" Et)/(“b" “») (14). If the left wave is a shock, it can be
shown using the jump condition & [ =[ «] . that
My = 2 (4-s) = oy (4e—s,) (15). Similarly,we define

Ma = (BB f(4ze) (16). If the right wave is a shock ve obtain

Mg = 0, (e 5,) = ~Prl=se) (17). For either of the two cases (14) or (15)

for M,  and (16) or (17) for Mg l.we can obtain My = (g, f;)“‘ F(e/B) (18),
' and Mo=(a R)2F(R/R) (19)

where

(xex®)® w5

(-X)/anz (1-X") . X &1

F )

f2a)

Upon elimination of w, from (14) and (16), we obtain

P
P* =(u"—“g+ ‘cﬁg . 8 Rﬁ‘)/(%g, 3 ‘/\1.) {o1):

o

.




The three equations (18), (19) and (21) have three unknowns which can be found
using an iterative procedure. To start the iteration, we choose an initial

0 ) o
value for P* . - (P " P )//2 (following Chorin), compute Mg and. My |

+ Qi i
and then compute Pel + Mg and Mff for Y >/ o using

- P &
&7 ot e ﬁﬁ% ¥ /ﬂf’ )/( %2’ + }f‘?f) (222)
R = o mex (€1, ‘F??) + (1— )R’ (22v) .

MM = (B ) F(E/R) (220)
MY = (&/"L)Vz F(a‘iﬁy&) (22d) ,

|

Equation (22b) serves two purposes:? o is initially set equal to | , and the
first part of the right hand side is needed because there is no guarantee that

" in the course of the iteration P remains #©. He set EI = 16°. The
second term only comes into use if the itera.tibn fails to converge (after L.
iterations), as may happen in the presence of a strong rarefaction (Chorin
(1976)). To overcome this problem, e< ié halved after every L.  iterations

(wve set L = 20) until convergence is obtained. The iteration is stopped when

e (|12 =], [P2-P] ) £ 16 ,

: o= ; *
oie then Bets Ma =M L MmN L P PYT L LT

avoid spurious convergence when r.. = B R , we ensured that the iteration was

carried out at least twice.

After P,,. ,» M, and M, have been determined we can-obtain (g by elimi-

nating B from the definitions of M, and M, , to give

= (BB + M + Meee)/ (Mt Me) |

Py is obtained from Py using the relation P = ALY  (10a).

Now the complete solution to th:.s simplified Rlemann problem can be obtained using

the jump concht:.ons -for shock waves and (since the flow is adiabatic in smooth

~8
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regions) the isentropic law and consta,ncy of the Riemann Invdriants for the

rarefaction waves. This solution is then sampled at time tn-#?a, at the

points P.‘ .

Given the solution to the Riemann problem, the behaviour of this solution
is largely determined by the values of e, (ie. the sampling positions, P;, |
If @; is close to ~%, the values of « and p at ((i+ '/2)45%‘»,(“*' '/2)4‘5')

will probably have come from S,_ (i.e.(‘:“‘:ndf)), while if ©¢
is close to 4, they will most likely have come from . . It
is important that the ®; tend as fast as possible to equidistribution on
[, ,%—J If a new © ispickedfor each & and each v , Chorin (1976)
has shown that in general it produces an incorrect solution. This is because

there-is a finite probability that a given state will propogate to both left

and right and create a spurious constant state. Thus, to prevent this happening,

n
we chose a new value of e only once per time level, & . To further increase
3 6“ ’ s 2 . o s iyt I > 4
the rate at which reached equidistribution over C—g, 2], we used the following

procedure suggested by Chorin (1976): the interval C-e;’g . %J was divided into g,

-l -
sub~intervals, and @ was chosen at random from the first subinterval , &
w1 !
from the second, --., and & was chosen from the first subinterval again,
-.‘

and so-on. The sequence of (&) replaced the sequence of 9" and were obtained
using the formula :
5 = (L,+0"+ W), ~ %

: where «(.. is an
integer given by l,‘,,_, = (m,+ln)moJ(mg) ,where 4’..("1;'; m, and M, are two
mutually prime integeré, ", < Mg, For the results presented here'we used
mL= 3,my=7 and £,= O, Ve also tried a few rulﬁs with m,=H |  but

there was no detectable difference in our results (beyond the inherent randomness ).

For the computer implementation of the RCM, there are four main cases. If

: ) J oy |
‘the sample point R lies to the right of the slip-line (4‘..&. @ Ax >M*A'6/2_)



we have two cases:

1. Ir B> R, the right wave is a shock; and (a) if P; lies to the left of

the shock line defined by dxAl'é: Se@ , we have WU Wy, and /3/0,, ; and

(b) if P¢  1lies to the right of the shock line, we have ®=w, and P =

2. Ir B¢ F, , the right wave is a rarefaction wave. This is bounded on the left »
)/z

by the line defined by "!/:Fe = U+ C, , where Cp = (zr P*gﬂ#) s and

on the right by the line defined by J’Vd{_ = Ug+ Cr where

‘/2

Cp = (¥ %@a) . (a) 1r P; 1lies to the left of the rarefaction wave,

then w=uy and L0, ; (b) if P: 1lies to the right of it, then = &a

and @ =0 ; and (c) if P; 1lies inside the right rarefaction wave, we

o>

equate the slope of the &y characteristic , f-ge=0+c, to the slope of the

-
line through the origin and (& asc , 4€/2 ), obtaining

U+ ¢ =7~9A%'(:

From the constancy of the J= Riemamn Invariant along the @ characteristics (which

(23) .

" cross the rarefaction),

- \
= e = Cpt % (u-a) (24)
and substituting into (23), we.obtain

= Lfu-2¢, + 4 e
e 3(R e AT (25)

By substituting (25) back into (24), we can obtain € , which is then used to

evaluate f s using

S (Xg)t ey PR

The other two cases, with ,P; lying to the left of the slip-line, and the
left wave being either a shock or a rarefaction wavé, are mirror images of cases
1 and 2, with G4 , J. replaced by ., I'r , and will not be described in deteil °*

.

(see Sod (1978) for full details and a flow diagram),

w10




To obtain the solution for WV (or m J,we solved equation (7) in the

form

Vo

L. 4+ w ¥ = o
o& dx (7a) .
It can be found from the jump conditions for equations (6), (7) and (8) (ie
SC“’]‘:[F(‘:?)J where (6), (7), (8) have been written in the form
34 + f @ =0 ) that v is continuous across a jump in ¢ and &,
although it may be discontinuous across a contact discontinuity, and initially
we assumed that it was. Thus equation (7a) was firstly solved for piecewise
nt¥2

constant Vv , with V., taking the value of either WA or Vp

je. inan x-¢€

we

depending on the x-component of velocity iy,

diagram the sample point P  (at time T

wevs ) Was traced back to time €,

along-the line with slope (u::,::) , then if this position ( E,“ ) was to

the left of the contact discontinuity position at time €, , (E+'%)d43¢ , v}’lij:

took the value of Vv , and if P was to the right of (é+ Ya)Ax, v‘-:".f:
took the value of V., Unfortunately, using this representation of v,

it was found that spurious constant states were generated, which lead to errors
in the profiles of « and ¢. So, to overcome this, we made W~ piecewise
linear between the values at the grid-points (for odd-numbered half-time-steps;
and linear between intermediate points for even-numbered half-time-steps e due

to the staggered grid used in the RCM). We then sampled w at the intermediate
points (i+%24%  (for which we are 1ookiné for the solution), assuming that
the appropriate valuve of v" travelle@ along the 3¢-@x¢f with the velocity
«™™ found at this point (c+')Ax (instead of with iegs = AR (R,
as previously). This involved. sampling the new u~profile at the poinf (i+5é)4* (see
Fig.3). This had the desired effect of producing a s}x;oother v-profile  and
thus prevented the formation of any spurious constant states. Removing the

randomness from this part of the sampling pro;:edure was8 justified, because it

was introduced to deal with discontinuities ’a,nd. v : was not discontinuous.

i
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the fixed sampling point for v, (i+})ax, at time taayi

the point P;, from which the value of v was taken forward

to time t,,,&;

the random sampling point for u and p P: -

Illustrating the sampling procedure for v.




Once the initial values of a.nd' v had been obtained, as described

above, they were then ad justed to take into account the effect of rotations
This was done by simply rotating the velocity vector ¥ = (et , V)
through an angle of ‘;}?A{:/z at each half‘-—time-steﬁ (this method of

ad justment ensured that '_‘f’ was not changed).

3. The Finite Difference Methods
(a) Firstly, the equations (1), (2), (3) were re~written in the following

flux forms

2 B9+ 3 (S L47)- ppv -k BB =

2 3+ & (puv) + 2ou -K'.;!;&(?ﬁ‘f)

¢ (26)

> & 2 (o) T L = O
A - o - AR
where artificial viscosity (or diffusion) terms have also been added to the

equations (and K is the diffusion coefficient), These were then solved

numerically by discretising them into the form:

’V‘?' e L, 24&{(“7“"""‘")(::»1:"‘) u". M){m +ml +ﬁj‘g¥-f’1 _Kf Auto et .,.j?

'n:fl 2A.6{_(pn+ n)(m?{m ) {V *\{-)){(n +m") +}M
; -K(;'?.ﬂ-!- =)
g

¢v\+l ¢n—0 ZAt{ (mc.\\: 1-:) -— (¢In' l' Aéxr -. .-o ) }

0 N o . n "

where ¢: = ¢(LAx, ndt) ) m: S (¢ “)c and n:_-‘ 3 (¢V): 3
and where we have used centred time differences, except for the diffusion terms,
which were forward-differenced in order to ensure stability (and obviously

forward time-differences were used for the first time~step for all terms ).




(b) Secondly, the equations (1), (2), (3) were solved as they stand,
except for the addition of artificial diffusion terms, to see if a non—

"conservation" form of the equations would give the correct (or at least

similar) solution. So, the equations solved were:

L‘&+“(}_§;&_ M,-—d@\r-—f(bz =

o a>c 27C 0 2>

s
%%"“%ﬁ ol Lo tRel -~ Tl (28)
20 20 m k%2 =0
aé—*“ax NS ox"

These were discretised into the forms

A
) ugfq: O‘:}”'— Zﬁé{ﬁ% - c-l ) yﬂ l) f\/—n K@(T-'O ?“n I+ b( )}

2 4x
(@:ﬂ"“") et V‘)-f-(u + ., {V:""‘\f.'r) n &
M=yTlaat] e ey L
- ke (G -2v" R ) (29)
vl a~i_ Qe }
¢ = ¢ 2&’6‘{( 0+04-¢.X;C a—lé-l) K( ‘:-'0_2 fb‘;‘."’- ‘::.)}
Axd .

4 Numerical Results

The initial fields for all the experiments were given by
u(x,0) = Ueos(>/1.) ,

v (>¢,0) = e <

l '/a
@(>x.0) = ¢ + U{ 60:(276/]_) b (¢,,, ) COS("/L)} :
where the length of the domain = 2wl
B = ghm, emi h,= the mean height of the fluid . These are .

the same as those used in WHy and they are .shown in Fige 6. Periodic boundary

' conditions were enforced; and A = 2wl /N y where N = 320 for

most experiments. Follov-ring WH, the numerical results presented here are in the

=13~ : siferes O



form of profiles of the non-dimensional variables w' = “/u , ¥'= V'/u
| v.
‘ and h'!= (¢" ¢m),/c‘4¢“z . For the two different cases presented, the

v,
initial Froude number F was the samey, F = U/;é,.,a = 1.0

Figures 4 and 5 show a comparison between the finite dJdifflerence method (a),
using the flux form of the equations, and the RCM, for the case where
Ro = 0.1, in which jumps were prevented from forming by the action of the
Coriolis force. The time is given in units of the inertial time scale f-. ’
and 320 grid-points were used (N = 320). As noted by WH, there is an inertial
oscillation present, with period 25‘:‘;@-:. There was little change in the shape
of the height profile, h, throughout this oscillation. The time shown hére is
f‘é’ = 37‘&’/2 ’ i;e. 2 of the way through the cycle. We can see that the
RCM produced a much less smooth set of profiles than the F.D. method (which will
give the correct solution in the absence of discontinuities)s This was due
to the random sampling in the RCM; which is only first order accurate. The
general shapes of the profiles from the two methods were very close throughout
" the oscillation. With twice the number of points the profiles were even closer.
This shows us that the RCM does tend towards the correct solution for fields
that remain smooth; although quite a 1arg9: number of points are required in
order to reduce the roughness of the profiles to an acceptable level. Also, the
RCM is much less economical to use than the F.D. method, for the same number
of grid—poihts; as can be seen from the CPU times required to complete the

inertial oscillation partialiy shown in Figs. 4 and 5: 3.1 seconds for the

FeDe method and 72.0 seconds for the RCM (both weré run on the IBM 360/195).

The formation and suﬁsequeﬁt evolution of a hydraulié jump is shown iﬁ
v Figs 6-10 (for the RCM model), for the caz;e with R, = 1.0 The time is given
in unite of the advective time-scale L/Cl s Which is the same as the inertial
time~scale here wijbh T o U/}L = 1.0;- and N = 320, In this case rotation

was still present, but it was not dominant as it was for the case with Ro = 0.1,




and it was unable to prevent the formation of a jumpe As with WH's results

with their F.D. method (displayed in their Fig. 1), the jump had formed by
U\’:Au 0.7« Then, we can see that it sharpened and travelled forward (in
the +ve ®~direction), and simultaneously a trough formed in h behind the jump,
resulting in a sharp "spike™ in the h~profile at the jump (as seen in Fig. 8

at Uf/L = 1.4). Also, the V-profile developed a sharp discontinuity in slope
at the jump. By u&/e_a 2.1 (Fige 9) the jump had propagated further along
the 2¢~axis, as the spike in h moved up the slope which was ahead of the jump,
and the trough behind the jump continued to propagate in the -~ve ¢-direction.
The jump in u, which reached a maximum near U‘C‘/Ln 1+4, had decreased

somewhat by U't/L = 201y and the value qf u over all 2¢ had decreased (or
become more negative). Meanwhile, the WV=profile had developed a more marked
minimwn behind the jump, due to the action of the Coriolis force on the earlier
high values of u behind the jumpe, The maximum in V" can be seen to have occurred
at the jump rather than ahead of it, presumably because the jump was moving

to the right and so overtaking and absorbing any smooth maximum in Vv that

tried to form. The maximum in v had broadened (behind the jump) by Ut/l. = 248
(Fige 10), and this seems to be associated with a slight broadening of the

spike in h, which was presumably due to the interaction of the jump with the

wave travelling in the opposite directione The jump itself had continued to

propagate forwards with no dissipation; as expected with this method.

If we now compare Fige 10 with Fige 11, -which is from another run of the
RCM model with the same paraineters, But a different set of random numbers, we
can see that the results are reproducible up to this time. Only minor
differences result from the different random numbers. In fact the results are

reproducible up to at lea.ét U'&/Ln Hebe

The results from the F,D. model (a) for this time (ue/a. = 2,8), with

the same number of grid—point'a, are shown in Fige 12+ The diffusion coefficient

used here was K = 2.5 x 104 m2 3-1. We can see that the profiles are very
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similar to those produced by the RCM model (Figs. 10 and 11), as they were

indeed for all the times up to L{fyﬁ_w 506 Although, naturally there was some
smoothing of the jump over about 5 or 6 grid-lengths due to the artificial
diffusion introduced. The value of K used here was chosen as the minimum that

was able to quickly damp out the spurious oscillations produced behind the

jump by the F.De method. Larger values of K naturally produced a much more
smoothed and less sharp jump; whereas lower values produced a sharper jump

more akin to the RCM solution, but with ostillations behind it, which increased
in magnitude and extent as K was decreésed (although once.formed, the oscillations
did not grow in extent with time and décreased in magnitude due to the continued
damping)e

As with the no-jump case, the RCM results are seen to be "rough" compared

‘to the smooth F.D, results, due ta the random sampling procedure . There

were also some small differences in the positions of the jump from different
RCM runs, but this was to be expected (1) (again due to the randomness), and
on the average the positions were the same as those from the F.D. runse Thus,
the RCM model's solution does tend (on average) towards that of the F.D. model.
So, assuming that our adaption of the RCH gives fhe correct solution, then our
conventional F.D, method (a), using the flux‘fofm of the equations, also gives

the correct solutione

Figures 13, 14 and 15 show results of further runs of the F.D., model (a),

with different numbers of grid-points. The value of K was changed for each run

to ensure that the same scales were damped each time. With higher resolution

(Fige 134 N = 640), the jump is naturally spérper, but otherwise the profiles

are virtually identical to those in Fige 12, with just a éliéht sharpening

of the trough in v behind ﬁhe jumpe As the résolution was decreased to N = 160

(Fige 14), the jump (and "spike") was naturally smoothed out more, resulting

in a reduction in amplitude in h ofkabout 10%; also, due to the smoothing of
=] o



the jump, its mean position is seen to be slightly further back (although the

front of the jump is at the same place), and the profiles behind the jump are
somewhat different (mostly dve to the smoothing of the trough)s As the resolution
was reduced further to N=40, we can see from Fig. 15 that the jump was smoothed 5
out so much that it is hardly recognisable as a jump, although the jump regioﬁ
still occupies only 4 or 5 grid-lengths (which is the same as for N = 160); the

remaining parts of the profiles were also smoothed considerably, and the

general evelution seems to be slightly slowere

Figure 16 shows an example of the results from FeDe model (b), iee the
one using a non-~conservation form of the equations. We can see immediately that
it is seriously in error compared to both F.D; model (a) and the RCM modele The
jump is seen to have propagated much élower and is considerably reduced in
amplitude. Also, there are quite large discrepancies in the velocity profiles,. ,
in particular the u~profile behind the jump (a spurious bulge)e The error in
jump position seems to have been the result of the jump moving much more slowly
just after it had formed, and this was associated with lower values of the
Uecomponent of velocity behind the jump (evident at Ue¢/L =1e4)e There was
also a much shallower trough in h behind the jump at this time, compared to the
other two models. From ley/L.u 2.1 onwards (ur to CI§/1_= 5.6) the errors
do not seem to have increased, since the jump position remained épproximately
the same distance in error and no more major discrepancies developed in the

shapes of the profiles.

He Summary and Discussion

The Rendom Choice Method, as used by Marshall and Mendez (1981) to model
numerically the one~dimensional shallow-water equations, has been modified

here to include rotation. After establishing ‘that this modified numerical model

'gave the correct solution for a smooth (high rotation-rate) case, it was then

o
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applied to a low rotation-rate case in which a hydraulic jump developede The

evolution of the jump in this model was compared with its evolution in a
conventional FeD. model incorporating artifical diffusion., It had been suspected
that the FeDo model might have given somewhat different results in the vicinity
of the jump, soon after it had formed, which could have subsequently corrupted

the solution. In terms of characteristics, it is well known for the case with

no rotation that the artifical diffusion incorporated into the F.D, model hae

the effect of preventing characteristics of the same family from meeting and
forming a discontinuous jump; they just come closer together with time. With
rotation in the model, it had been thought that possibly the characteristics
diverged again, rather than continuing to slowly converge, and that they then
carried information away from the jump region as spurious wave packetis,
dissipating the jump. From our results here; it seems that this was not the case,
with the F.D., model giving the correct solution (with the optimum diffusion),

but with some smoothing if the resolution ﬁas too low. When the non-conservative
formulation of the equations was used, errors were found soon after jump formation;

as also occurs without rotatione

This work is going to be extended to include jumps forced by orography,
in order to see whether F.D. models can correéctly handle the evolution of the

jumps in this case.
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