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Abstract

Lowest order shallow water theory is applied to flow, in a single vertical plane, over
a wide class of monotonic mountains. Many new flows are described. These include steady
continuous smoothly bifurcating flows, in which the fluid speed and the free surface profile
bifurcate smoothly at the apex of the mountain, unless the mountain is locally parabolic
there. In the latter case the free surface bifurcation is known to be abrupt and not smooth
at the apex, but we show that this is the exception. We demonstrate that the fluid speed
and free surface shape are sensitive to the mountain shape near the apex. Pseudo—steady
flows, containing a bore travelling upstream away from the obstacle, are exhibited. In
some cases the bore relieves what would otherwise be a blocked continuous flow. If the
incoming Froude number is not too large, the bore can lift the fluid so that it subsequently
flows over the obstacle either freely or, if energy dissipation is minimized at the bore, with
a bifurcation at the apex. Such bores can also coexist with what would otherwise be a
bifurcating or a free continuous flow. The strength ranges which are admissible for all
these bores are determined. A complete geometrical representation of all the possible

bores is given, in a three dimensional parameter space for the first time.

(© Crown Copyright 1994.




15 Introduction

There is a large literature about flows over obstacles, under diverse hypotheses, for
example either with or without stratification, either with or without a shallow water theory
to some order of approximation, and allowing for either one or two horizontal dimensions.
This paper describes many new results for the simplest of these theories.

We study the flow of homogeneous incompressible inviscid fluid, in a single vertical
plane, under the hypotheses of lowest order shallow water theory, over an obstacle having
monotonic sides rising to a single apex from both directions. A much larger family of such
"monotonic mountains" than previously considered is included. The most familiar obstacle
in the literature is the parabolic one, and we show that details of flow over this are not
representative of flows over members of the larger family.

We build upon previous work by Long (1954, 1970, 1972), Houghton and Kasahara
(1968), Baines et al. (1980, 1984, 1987), Pratt (1983, 1984) and Lawrence (1987). This
paper includes, in particular, a concise account of some results from a more wide—ranging
study by Broad, Porter and Sewell (1992a, b), and provides significant extensions of these
results.

In §3 we define the obstacle profiles. We exhibit steady continuous free flows over
them. We also specify conditions under which the free surface and the fluid speed bifurcate
at the apex. A new result, as far as we are aware, is that the bifurcation is smooth unless
the profile is parabolic, the latter being the only case in which the bifurcation is abrupt.
Pratt (1984) gives the most explicit previous recognition of an abrupt bifurcation over a
parabolic apex.

When the apex is so high that it blocks continuous flow, we show in §§5 and 6 how
this blocking can be relieved by a bore travelling upstream from the obstacle. The bore

raises the free surface so that it passes over the apex either freely, or with a bifurcation

there, depending on whether or not more than a minimum energy is dissipated at the bore.




We also prove, for the first time, that there is a maximum supercritical incoming Froude
number above which blocking cannot be relieved by such bores. In §5 we also give a
number of new solutions, including specific ranges of bore strength, in which bores can
occur in an already free or bifurcating flow.

In §7 we summarize our results, and we express them all geometrically in a
three dimensional parameter space spanned by incoming Froude number, mountain apex
height, and bore strength. This is a significant extension of the so—called classification

diagrams which have previously appeared in the literature, as we indicate in §8.

s Flow Variables

We define notation as follows. x is the horizontal coordinate. b(x) is a given
continuous function whose values are the height of the bed above a fixed horizontal level.
t is time, and d(x, t) > 0 is an unknown function whose values are the fluid depth above
the bed. u(x,t) > 0 is an unknown function whose values are the horizontal fluid speed.
Q =ud > 0 is mass flux. s=d + b is free surface height. g represents acceleration due
to gravity. e = %u2 + gs is total energy (kinetic + potential + pressure energy) of the
representative fluid particle according to lowest order shallow water theory. F = u/ (gd)*
is the Froude number.

Where u > 0, i.e. except in still water, these definitions imply that



We also define

2(e—gb 1 04/3 , 2 n—2%/3
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The function G(F) in (2); is convex with a minimum at G(1) = 1, as shown in Figure 1.
This proves that where G < 1 no flow is possible; that where G = 1 one flow (called
critical, with F = 1) is possible; and that where G > 1 two flows are possible, one being

subcritical (F < 1) and the other supercritical (F > 1) .
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Figure 1 G = %F4/3+%F-2/3

3. Steady Flow over a Monotonic Mountain

Where the flow is steady and continuous the differential equations of mass and

horizontal momentum balance require that, for all x and t,
Q = constant and e = constant (3)

respectively. Assuming this Q > 0, the right side of (1) is a concave function of u

having a maximum value
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at u= (gQ)l/s. If Q=0, then s = constant and k =s.

We suppose that the given bed function b(x) has a maximum value, say a >0, at
the apex of the obstacle. Then the flow (3) will be free to pass over the obstacle ifla <k
but it will be blocked by the obstacle if a > k. We shall demonstrate that the flow can
bifurcate at the apex if a = k, and we call such a flow a bifurcating flow.

We define a monotonic mountain to be any profile whose b(x) rises monotonically
to the apex value a and then falls monotonically away from it. A simple model of a

monotonic mountain is

a[l [%]0] —l<x<v
b(x) = (5)
a[l—[?:—llj]a] T & 4

with b(x) = 0 where |x| > £. Here a, £, v and o are assigned parameters. We
assume £>|v| and o> 0. The apex height a > 0, but (5) with a < 0 also models a
depression in an otherwise flat bed. The length of the mountain or depression is 2¢, and
the value of v/{ indicates its asymmetry. The value of 1/c is a measure of the sharpness
of the apex. Five asymmetric examples of (5), with v = £/3, and one symmetric example
with v = 0, are displayed at the bottoms of the individual diagrams in Figure 2, for
oc=1,1.5,2,3,10 and 2 respectively, and with a = 1.01 in all six profiles.

Equation (1) shows how u must vary with x in the flow (3). We display three
cases of this dependence, for each of the six obstacles just described, in Figure 2. To do
this we have chosen the values Q =9, e="7.5 and g = 1. These are representative of a

trio of Q, e, g values which ensure the existence of a pair of incoming or outgoing flows

with constant u over the distant flat bed |x| > ¢, one subcritical (F = 0.54 <1 with




u = 1.37,d = 6.56) and one supercritical (F = 1.73 > 1 with u=d = 3) there. There
are various equivalent ways of proving the existence of such a pair. One way is to observe
that the chosen trio ensures G = 1.16 > 1 where b = 0, and hence the existence of the
stated pair of incoming flows, by the convexity in Figure 1.

Over the obstacle each member of the pair ceases to have constant u. When a =k
(= 1.01 for the chosen constants), the two flows (labelled 1.01) are seen to come together
at a bifurcation where F = 1 over the apex, and the bifurcation is smooth unless o = 2,
when it is abrupt. The obstacle profiles shown in Figure 2 are also for a = 1.01, as stated
above. When a < k, the two u(x) functions (labelled 0.7, and corresponding to
a = 0.7) approach each other but do not come together, so they indicate two free flows, one
always subcritical and one always supercritical. When a > k, the two u(x) functions
(labelled 1.2, and corresponding to a = 1.2) join up and never reach the apex, thus
signifying blocking of each putative flow.

The free surface height functions s(x) are qualitatively the same as the u(x)
functions, and look very similar (Broad, Porter and Sewell, 1994), except that the
supercritical s(x) surfaces are below the subcritical ones, whereas Figure 2 shows the
supercritical u(x) functions to be above the subcritical ones.

The nature of the bifurcations of s(x) and u(x) at the apex when a = k can be
explored analytically as follows for any piecewise differentiable function b(x), not merely
the example (5). First we deduce that where b =k, (2) and (4) imply G =1 and
therefore F = 1 above the apex. Now suppose that (1) has the piecewise differentiable
parametric solution x = x(¢), u = u(e), which is also regular in the sense that we can
subsequently choose the parameter ¢ to be either x or u, depending on the case. Then
if a prime denotes one—sided e—differentiation, two differentiations of (1) evaluated at the

apex imply

ab,
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Figure 2 Fluid speed functions u(x) over monotonic mountains (5).




For a sharp apex with finite db/dx # 0, x’ = 0. We then choose € = u, so that

dx/du = 0 and (db/dx)(d2x/du?) <0 when d2b/dx? is finite. This is consistent with
the case ¢ =1 shown in Figure 2.
For a smooth apex db/dx = 0. If d?b/dx? is infinite, as it is for (5) when
1 < 0 <2, wecanchoose ¢ = u so that dx/du =0, as Figure 2 illustrates for ¢ = L.5.
For a smooth apex with finite d2b/dx?, asis true for (5) with o= 2, we can

choose € = x so that

%:x[— g%?]% (7)

This confirms the abrupt bifurcation observed by Pratt (1984) for the case =2, v=10
illustrated in Figure 2. It also describes abrupt bifurcations in which there is a
discontinuity in d2b/dx2 and therefore du/dx through the apex, as illustrated for o = 2,
v ={/3 in Figure 2. Furthermore, d?b/dx2 =0 implies du/dx = 0, as Figure 2
illustrates for ¢ > 2, and third or higher differentiations of (1), to supplement (6), will
reveal the smooth bifurcations explicitly.

These local considerations do not specify which of the two solutions made available
by the bifurcation will be followed when the particle leaves the apex. It might be
suggested, in the common case of the symmetric parabolic obstacle (¢ =2, v =0), that
(for example) an incoming supercritical flow will choose the subcritical outgoing option in
order to preserve smoothness of u(x) (and s(x)) at the apex. Such a criterion ceases to
be available in the asymmetric case o =2, v # 0, as Figure 2 shows for v = £/3, because
both outgoing flows would require a gradient discontinuity. Such a criterion even ceases to
be applicable for smoother obstacles with ¢ > 2, because the smooth bifurcations show
that no transition is abrupt. A thorough further investigation is required of the extra
criteria needed to select the outgoing solution. One type of criterion is a stability analysis,
such as that of Pratt (1984) for o = 2. Another type is the effect of downstream
conditions, which we have not needed to specify here. For example, Gill (1977) considers a

solution in which there is a stationary bore in the lee of a parabolic obstacle. Analogous




problems in evolving equilibrium states of solids or structures envisage the presence of

imperfections to choose between bifurcations of a perfect system.

4. Dynamics of Bores

A bore is a finite discontinuity in d. Here we summarize the dynamical properties
of a bore at any location.

Let Cm be bore velocity, where m is a unit vector directed to the right, and C
may have either sign. Let um be particle velocity, where u may have either sign at this
stage. Then (u— C)m is velocity of particle relative to bore. Define w =u—C.

At the bore certain quantities, such as d and u, experience a finite jump in their
values. We designate values immediately to the right and left of a bore by plus and minus
subscripts respectively, and their difference by a square bracket in the sense that
[d]=d, —d_, for example.

The jump conditions of mass and horizontal momentum balance at the bore are
[wd]=0 and [w2d +5gd?) =0 (8)

respectively. The bore has [d] # 0 with d_ >0 and d_> 0 by definition. Then (8)
implies w_w_ > 0, so that particles do cross the bore. We can choose this transit to be
from left to right without loss of generality, so that w >0 and w_> 0. The

hypothesis of energy loss at the bore implies, with (8), that an energy flux quantity
E=zgul[d? <0 sothat [u] <O0. (9)

The three physical principles also imply

a4t
(W] = —[dlg? |F—5—| sothat [d] >0, (10)
+ o
}
C=u - gd+(d;d+ 4 and [¢] < Clu]. (11)
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Energy loss also implies that the jump must be such that w_ > (gd_)? and w_< (gd+)%.
Deem the left side of the bore to be the known side, and the right side to be the
unknown side. Then d and u_ are known, and we enquire how much information (8)

to (11) give about d, and u_, for example in terms of the non—dimensional quantities

A 5 d i ith F = (12)
= = wit = :
T g TR ~ ()}

Conditions (9), (10); and (11); imply
a1 5
e it [T‘] S [—T—A + 1] , (13)
g 1) [% A+ 1)]%, (14)
%
(g_SF SP - [% A6k 4+ 1)] . (15)

The domain of interest of (13) — (15)is A > 1, by (10). Their range is calculable and
depends upon F . Wecall A the bore strength.

In subsequent Sections we confine attention to u_ > 0, so that F_ is the
incoming Froude number at the bore.

Here we note that if still water is on the left of the bore (u_ = 0), the bore must
be moving to the left (C < 0), and sets particles in motion which move to the left more
slowly than itself (0 < —u < - C).

In the absence of other considerations (such as the presence of an obstacle
somewhere in the flow), any strength value A > 1 can be inserted into (14) — (15) to

define the bore.
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5. Analysis of Bores

In the remainder of the paper we determine the conditions which allow a bore

satisfying
N R ESIRA L (16)

to be the transition from one steady flow to another, with the bore located on the flat plain
upstream (to the left) of an obstacle of any shape (not necessarily (5)) and apex height a.
Such a bore is either stationary (C = 0), or moving away from the obstacle (C < 0). We
exclude C > 0, because such a bore would run up against the obstacle. The bore must
face upstream, by (10),. Although it slows the fluid down, as (9), requires, we confine
attention to the case in which the bore does not stop or reverse the fluid. The outgoing
flow will pass over the obstacle either freely (if k I a) or with a bifurcation at the apex
(if k, = a).

The overall flow is steady if C = 0, but pseudo—steadyif C < 0, in the sense that
it is steady everywhere except at the location through which the bore is currently passing.

The incoming flow may be either blocked (if k < a), bifurcating at the apex (if
k =a) orfree (if k> a). Although the relief of such blocking by a bore satisfying (16)
is the initial motivation for our study, the analysis of such a bore in a bifurcating or free
incoming flow requires the same mathematical functions, to be described in this Section,
and so can be treated economically at the same time.

The analysis turns out to be controlled by the juxtaposition, for each incoming F_,

of the three functions /\3/2, i(A) in (14), and k+()\) defined by

L %[&]HA—%J“ (17)

i

from (4) at b= 0, (12) and (14). To explore the mathematical properties of these

functions it is convenient to work first on the domain A > 0, which is bigger than the
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Figure 3. Examples of u(A) and k (A) and their juxtaposition with +/\3/2 ;




domain A > 1 of eventual physical interest specified by (10),. To appreciate the following
general properties it will be helpful to refer to the particular curves shown in Figure 3 for
subcritical F_ = 0.2, supercritical F_ = 2.5, and hypercritical F_ = 6. In Theorem 2(i)
we shall give reasons why an inflow with F_ > 4.47 may conveniently be called
"hypercritical".

The function x()) is strictly concave for each given F_ . It has a single stationary
maximum at Ap, say, and A, increases with F_, having An =1 at F_=1.
Clearly x(0) = 0, and there is a single positive value Ao, say, where w(Ao) = 0. The
domain 0 < A < ) illustrated in Figure 3 is then sufficient to discuss flows which do not
reverse at the bore, because x> 0 there. It can be proved from the properties of cubics

that

Moo= 7 [1 + 2(4 + 6F_2)tcos w] (18)
where

cos ¥ = (9F 2—-8)(4 + 6F_2)- /2 and 0 <Y<,

This function Ao(F_ ) in (18) is shown in each part of Figure 4. No bore which does not
reverse the flow can have strength greater than Ao.

A sufficient range of physical interest for u(A) is 0 < p < F_, because u, > 0
and ) > 0 imply g > 0, and (8); with (16) implies [Q] = C[d] < 0, so that Q+ <O
and therefore u < F_. From (14) either p(1) =F_ or p();) = F_, thus defining a
function Ay(F ) by

e %[(1 + 8F_2)%-1] : (19)

which increases as shown in Figure 4. A sufficient domain of physical interest for A is
therefore 1< A< Ao if F_ <1, and A{ <A< Ao if F_21, and p(X) isa
monotonically decreasing function on both domains, as illustrated in Figure 3. Bores with
strength ), are stationary, and stronger bores move to the left. We can reduce these A

domains even more by arguments which follow in Theorem 2.
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The function + A*/2 is strictly convex with zero slope at A = 0.

Let A, denote the unique intersection of + /\3/ 2 and u()) foreach F . It
follows from (17) that k +(/\) has a stationary zero at Aj, so that k +(A2) = 0. Allowing
F_ to vary in this equation defines the function Ay(F_ ) shown in Figure 4. For each F_
the function k+(A) is convex in 0 < A < Ay and monotonically increasing in Ay < A < Ao.
Clearly k +(/\o) = Aod_, and k +(/\) has a cusped local maximum at this point as shown
in Figure 3, before falling to another zero minimum and then rising to infinity. We
mention this cusp in passing, because any investigation of bores which reverse the flow
(s < 0) will need to use it. We need ), to prove Theorem 1(i) below. Figure 4 shows
that Ao(F_) and A(F_) crossoverat F_=1, with A\;> Ay for F_>1.

Let A3 be the particular bore strength satisfying k +(/\3) = a, i.e. such that the
outgoing flow bifurcates at the apex. The monotonically increasing property of k +(A) in
A2< A< g foreach F_ shows that Aj; is unique there for each a < A¢d_ . Examples
are indicated in Figure 3 for the values a/d_=0.7,2.8,5 when F_=10.2,25,6
respectively. Allowing F_ to vary permits k +(A3) = a to be written more explicitly, in
terms of the function u(A, F_) in (14) and (17), as

a 1 /-"(’\37 F__)
e e
5 3

2+M—%Vu%ﬂjrh. (20)

The parameter a/d_ is apex height normalized by incoming fluid depth.

This equation implicitly defines a function A3(F_,a/d_ ), and therefore a function
A3(F_) for each choice of a/d_. The latter function is obtained numerically and
illustrated in Figure 4 for A3 < A\, which is sufficient for our purpose, for the values
afd_=04,1.5,4 and 8. The increasing property of k+()\) shows that no bore of
strength less than A3 will satisfy (16), because the outflow from it would be blocked
(k+ <a). As aj/d_—0, A3(F_)— Xo(F_).

From the fact that (4) can be written alternatively as

o 2
%:%F2+1—%F/3 (21)
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we can see that, where b= 0,

k_ 2
a:=%F_2+1—%F_/3. (22)

This function is shown in Figure 4, and it intersects Ao(F_) where F_ = 4.47 and
A0=690. If A=1, u=F_ and therefore k+(1) = k_ from (14), (17) and (22).
Let A4 < Ao < 6.90 denote the second root of k+(A4) = k_ which Figure 3

illustrates when F_ < 4.47. More explicitly,

+ A=A F_)) 5 (23)

defines a function A4(F ) which is shown in Figure 4 within 1 < F_ < 4.47 by solving
(23) numerically. Its end points there are A4(1) = 1 and A4(4.47) = 6.90 . If a bore of
strength A4 could exist it would not change the value of k in (4), and therefore it would
not change the propensity of the incoming flow to surmount the obstacle.

The particular values a, fand 7y of F_ which are shown in Figure 4 are defined
as follows.

If 0<a/d <1 therearetwovalues a<1 and f>1 of F_ suchthat a=k_
(thus defining inflows which would bifurcate over the apex). If a=0, a=f=1. If
a=d , a=0 and f=2.28. If 1<a/d <6.90, B is defined in the same way and
satisfies 2.28 < #< 4.47, but a is defined differently as the value such that
afd = Ao(@). If 6.90 <a/d , a is undefined and f is now redefined as the value such
that a/d_ = Ao(f), so that > 4.47 . In the last case the redefinitions have the effect of
replacing @ by £, which facilitates a succinct statement of Theorem 2(iii) below.

These definitions of o and [ can be expressed equivalently as locating

intersections of the functions Ao(F_ ), As(F_) and A4(F_), using p(Ao) =0, (20), (22)

and (23), as follows. a locates the intersection defined by
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Figure 4. Functions of F_ deciding bore strength ranges.
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1 0<a/d <1
Ai(a) = { if { (24)
Mo( @) 1<af/d_ <6.90.

f locates the intersection defined by

(25)

A (B) 0<a/d_ < 6.90
A3(B) = [ if [

Ao(B) a/d_>6.90.

For all a/d_> 0, 7 denotes the unique intersection of A3(F_) and M(F_), so

that
A3(7) = A7), (26)

and 7> f( as Figure 4 shows. If a=0, y=0=1.

Summarizing thus far, the foregoing paragraphs define the functions
A(F_ ), M(F_ ), Ao(F_), As(F_,a/d_), Ag(F_) and k_(F_), only one of which
depends on a/d as well as F_ . In terms of these functions, shown in Figure 4, we are in
a position to establish the main results about bores of type (16), which we express in the
following theorems. (In Broad, Porter and Sewell (1992b) A 42 Ag Ag were used to denote

the present Aa, A3, A4 respectively).

Theorem 1

(1) The outgoing flow from any such bore must be subcritical (F e 1), for every
type of incoming flow whether it be subcritical or supercritical, and whether the
inflow would be free, bifurcating or blocked.

(ii) No such bore can exist if
%— 2 Ao (27)

because this implies that the outgoing flow would be blocked.
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Proof

(i) From (12) the Froude number F, =u_ / (gd_*_)% on the right of the bore can be
written F = p / 32 with (14) this defines a function F+()\) such that
F +(/\2) =1 foreach F . Allowing F_ to vary then defines the function
Ao(F_ ), which increases with F_ as shown in Figure 4, and A(1)=1. If
F <1, then \{< An<A2<1, andif F_>1 then 1 <An<A2< Ay, a8
Figure 3 illustrates. Therefore, for every F_ > 0, A, is strictly to the left of the
sufficient domain of physical interest established after (19), so that p2 < A3. In

other words, any outgoing flow from a bore must be subcritical.

(ii) Since k +(A) is monotonically increasing in A2 < A < Aq, which includes the
domain of physical interest, k+(/\) < Aod_ there. Then (27) implies a > k+(A),
which violates the last condition in (16) requiring that the outgoing flow should
not be blocked.

Theorem 2

(i) If the incoming flow would be blocked, then for each value of a/d_ satisfying

kg
< < Ao (28)
4.

a bore satisfying (16) can exist only for incoming flows in the range
a<F_<f<44r (29)

illustrated in Figure 4(a), (b) and (c). The strength A of such a bore must lie in

the range
A3< A< Ap<6.90. (30)

The outgoing flow from every such bore relieves the blocking, and none of these

bores can be stationary. The outflow from the weakest bore with strength A3




(iii)

Bty [0

becomes critical when it reaches the apex, and permits a bifurcation there.
Stronger bores induce a free flow over the apex. Blocking cannot be relieved by
any such bore if F_ > 4.47, and correspondingly, no such bore which relieves
blocking can have strength greater than 6.90. This is the sense in which an

inflow with F_ > 4.47 can be called hypercritical.
If the incoming flow would bifurcate, so that
k_ = a< )\od_, (31)

a bore satisfying (16) can exist only for the particular incoming flows

P =<l and FPo=0 with 1< <228 i 0<ac<d ,

(32)
F =f with 228<f <447 if d <a<6.90d .
The strength A of such bores must lie within the ranges
&N <Ay F__=a, A3< A< A if F_=ﬂ. (33)

When F_ = § the outflow from the weakest bore bifurcates at the apex, and the
free surface height there is less than that which the bifurcation would have had if

the bore had not intervened. None of these bores can be stationary.
If the incoming flow would be free, we have
Ak Chod LS < AT (34)

or

a < Skt 5 B AT (35)
In these cases a bore satisfying (16) can exist only for incoming flows in the ranges

e Brca il anaads - e R (36)
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The strength A of such bores must lie within the ranges

1 <X Xy if 0:<F < aswith a<d (37)
A At B F Oy (38)
Nl e Ny i R (39)

The outflow from the weakest bore in (38) bifurcates at the apex. None of the

bores in (37) or (38) are stationary, but the weakest bore in (39) is stationary.

Apex heights satisfying (28) ensure that the inflow would be blocked (k_ < a),
and therefore that the curve k (F_ ) shown in Figure 4 must be below the height
a. This means that F_ < < 4.47 for all a such that 0 <a/d_ < 6.90. It also
means that F > a if 0 <a/d <1. For 1<a/d_<6.90, itis a/d_ < Ap in
(28) which implies F > a. This establishes (29) in terms of the definitions of «
and ( given after (23). The hypothesis a/d_ < Ao also permits some A > A3
such that k +()\) > a, so that certain bores are possible whose outflow is not
blocked. Examples of such a/d_ are illustrated in Figure 3, namely a/d_ = 0.7,
2.8 and 5 for F_=0.2,2.5 and 6 respectively. These illustrate how A3 is
defined by k+()\3) =a, sothat a <k, < Aed_ specifies the range (30), by the
monotonicity of k +(/\) and w(A). The range (29) is then alternatively implied by

the definitions (24) and (25) of a and £ as intersections involving A3(F_ ).

The property k +(/\3) = a implies, by our analysis in §2, that there will be a
bifurcation at the apex, with F = 1 there. Stronger bores with A3 < A < Ag
therefore imply a free flow. Examples are shown in Figure 5. The range (28)
vanishes at F_ = 4.47 because this is the intersection k (F_ ) =d_Ao(F_)
shown in Figure 4, and )((4.47) = 6.90. This proves that blocking cannot be
relieved if F_ > 4.47.
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We can see from the illustrations in Figure 4(a), (b) and (c) that A3 > Ay in (29),
because 7> f when a > 0. This proves that no bore which relieves blocking

can be stationary, because C();) = 0. Instead, the weakest such bore has speed

o [[% b 1)]*—F_](gd_)* >0 (40)
from (15).

The following alternative argument is worth noticing. A stationary bore (C = 0)
would satisfy [Q] =0 from (8); and [e] < 0 from (11);, and therefore [k] <0
from (4),i.e. k 4 < k_. But this would contradict joint hypotheses a < k 2 and
k_<a. This proves that blocked or bifurcating inflow and a free or bifurcating

outflow cannot coexist with a stationary bore.

The values of F_ at which a =k _ are, by definition, those in (32), as illustrated
in Figure 4(a), (b) and (c). The strength ranges (33) follow, for example by
examining Figure 4. When F_ = o the weakest bore is only nascent (A — 1),
but when F = the weakest bore has strength A3, and since k +(A3) = th
implies a bifurcation when the outflow reaches the apex. None of these bores are

stationary because 7> (> a.

The general formulae at the beginning of §2 allow the local free surface height to

be written as

i e — gb (Qzlg)l/3(3G/2)
= b= +b 4

in terms of F and the constants of the motion. When there is a bifurcation point
over the apex F =1 and b = a, so the free surface height there is
%% + %a = (Q‘A’/g)i/3 + a. From (8);, (10); and (16) [Q] = C[d] < 0 at the bore,

so that Q o Q_ . This proves that, when F_ = f, the free surface height of

the bifurcation over the apex implied by k = a is decreased when the weakest
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bore intervenes, implying k+ = a. A diagram illustrating this decrease over a
symmetric cubic mountain, and thus showing how two different bifurcation points
over the apex are available to the incoming flow, is given by Broad, Porter and
Sewell (1992b, 1994). Here we have been more specific than previously about the
particular incoming flows (32) which permit bores (33) to intervene in an already

bifurcating flow.

(iii) Apex heights satisfying a < k_ ensure that the inflow would be free, and also
that the curve k (F_) shown in Figure 4 must be above the height a. This
means that F_ > f in the case of (34) as Figure 4(a), (b) and (c) illustrates, and
that 0 <F_ < a if a <d_ as Figure 4(a) illustrates. In the case of (35) it is
the curve Ao(F_ ) which must be above a/d_, which requires the redefined A

in (25); to be such that F_ > #. This proves (36).

The ranges (37) — (39) then follow, as the illustrations in Figure 4 make clear.
When F_ > 1 with a <k weseethat A3 < A4, and the least admissible
strength is either A3 (for which the outflow bifurcates at the apex) if F_ < 9, or

A1 (for which the bore is stationary) if F_> 7.

Previous arguments can be repeated to establish the bifurcation and

non—stationary properties. a

Evidently if the inflow is fast enough (F_> 7) the weakest bore satisfying (16) is
always stationary when (35) applies. This gives a situation in which two truly steady flows
are possible, namely one free flow without the bore and one flow with the bore. The
outflow from the latter is free if F_ > v, and bifurcates over the apexif F_= vy. By
contrast, a flow with a moving bore is only pseudo—steady.

A diagram showing the free surface over a symmetric cubic mountain for a free

incoming flow having F = 1.73 , together with an intervening bore of strength A3 = 2.06
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from which the outflow bifurcates over the apex, is given by Broad, Porter and Sewell

(1992b, 1994). This illustrates (38).

Theorem 3
Among the bores (16) whose strength satisfies (30), (33), (37), (38) or (39), the

weakest one involves the least energy dissipation —E and the least [e] .

Proof
The minimum energy dissipation property follows from the monotonic character of
(13) in every case.

Another non—dimensional variable v with values defined by
1 1 2
gd_ = Lu,2+gd, , sothat »()) = g[lﬂ b (42)

can be added to the list (12). It can be shown that »()) is an increasing function, and
this establishes the minimizing property of [e] at the weakest bore, because e, = vgd_

where b= 0. o

It follows from Theorem 3 that, if minimum energy dissipation is adopted as a
hypothesis, it selects the weakest bores from the admissible ones determined in Theorem 2.
The outflow from such weakest ones has a bifurcation at the apex in the case of (30), (33),
and (38), but is a free flow in the case of (33)y, (37) and (39).

The monotonicity of — E also indicates that if C > 0 is permitted when
F_ > 7, less energy would be dissipated than if C = 0. In other words, weaker bores than
(39)4, with strength in the range A3 < A < Ay, would dissipate less energy if they were

allowed to run downstream (instead of being stationary) while facing upstream. This is in

the case when the incoming flow would be free otherwise.
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We are not aware whether hypercritical inflows have been observed in nature.
Clearly they would be harder to achieve in certain laboratory experiments than those
commonly quoted. As we have seen, however, their mathematical properties have some
novel features.

Next we derive some relations between the pairs of steady continuous flows which
can have the same given values of Q > 0 and e in (3) at a location with bed height b
(perhaps b = 0 in particular). Such values specify a single given value of G in (2);, and
we have seen that whenever such G > 1, Figure 1 shows that there are two possible values
of F. We shall find it convenient to write them as F and F*. That is, one flow of the
pair is "unstarred", and the star denotes "the other flow". One is subcritical and the other

is supercritical, but we do not need to say which is which.

Theorem 4
(1) The speed and depth of the unstarred and starred flows in a pair are related by
d* 1 * 1
H-=ZF[(8+F2)*+F] : “T=§F[(8+F2)*—F], (43)
ho P
B =F [(8+F2) +F] | (44)
(ii) The pairs immediately on either side of a bore satisfying (16) are related as

follows. All the bores with F_ < 1 which are described by Theorem 2 have

* *
PreloclgP” < b (45)
and

* * * *
d*d* <d*d <d d* <d . d_. (46)




Proof
(i)

RN
All the bores with F_ > 1 which are described by Theorem 2(i) and (ii) have

F+<F_* <1<F_<F+* (47)
and

* * * *
d+d_<d+ d:? <d+d_<d+d_ . (48)

All the bores with F_ > # which are described by Theorem 2(iii) have the
properties (47) and (48) when G+ > G_ . For these bores (38) and (39), however,

it may happen that either G = G_ which implies

F, =F? cd<® =F2 (49)
and
* e o *
d*d <d*d* =d, d <d d*, (50)

or that G s G_ which implies

i e <1<F; <P (51)

+
and

* * q % *
d*d <d,d <drd” <d,d*. (52)

From the definitions above and at the beginning of §2,
S 1y * i *
e—gb=x5u?+gd=5u* +gd* , Qi=ud=wd" (53)
Eliminating u from the first of each of these equations gives
e—gb _ 2
o Em

and a similar equation for d* by eliminating u*. Therefore both 1 and d*/d

are roots ¢ of




(i)

—9g =

With (53) this can also be written as
B—(LFr 4 )24+ 2F2 = 0
2 2 ;

This equation has roots 1 and ZIIF[F + (8 + F2)%] . This proves (43);, and (43)2

is its reciprocal, by (53),. Combining (43) gives (44).

The function F +(,\) = u(A)/ 32 defined from (12) is a monotonically decreasing
function of A such that F +(1) =F_. Therefore F, <F_ for every bore except

the nascent one.

Hence if F_ < 1, the corresponding ordinates on Figure 1 must have the property
G T G_, and horizontal lines through these values meet the convex curve a
second time to define the starred flows such that F _: >F* > 1. This proves
(45). Then (46) follows from the monotonically increasing nature of the function

f(F) (say) on the right of (43),, applied to f(F+) < H(F3

If F_>1, weknowthat F, <1 from Theorem 1(i). Next we need to note the

general formula that
gk—b) = 360G -1) (54)

from (2) and (4), so that since Q # 0 from (16),,

L [Q+ ]2/3 : (55)

SR B
From (8); we have Q=8 (A —1)Cd_, and using (14), (15) and (16) allows

(55) to be expressed as a function of A and F_ .

The family of bores (30) in the range 1 < F_ < [ belonging to (29) has C <0
and k+ >a>k . Thebores (33); have C < 0 and k+ >a=k . Ineachcase

G <G b9 from (55), and the horizontal lines through these unstarred points on
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Figure 1 show that the starred points satisfy (47). Then (48) follows from the
property f(F+) < f(F_*) of (43);.

If #<F <447 the families (38) and (39) each contain a bore of strength

X¢> Ay for which k, =k_ and Q, < Q_, sothat G > G_ from (55).
Therefore (47) applies to such a bore.

If y<F the weakest member of the family (39) has Q+ =Q: and if 4.<4.47
also, k+()\1) < k+(/\4) =k_, sothat G, <G_ for such a bore (again from (55),

to which (51) then applies.

By continuity, when y< F < 4.47 , there will be a member of the family (39)

such that G+ = G_, to which (49) therefore applies.

6. Examples of Bores which relieve Blocking

Examples of bores which relieve blocking and have properties established in
Theorems 1, 2(i), 3 and 4 are displayed in Figure 5. Symmetric parabolic and quartic
obstacles (5) are chosen, namely b(x) = 1.2(1 —(x/£)?) and b(x) = 1.2(1 — (x/£)*) for
|x| < ¢, with b(x) =0 elsewhere. The free surface height functions s(x) are shown, for
the pair of incoming flows which, on the left of the bore, have the same values Q =9,

e = 7.5, g = 1. These are also the constants chosen in the paragraph after (5). Since

k = 1.01 from (4), and a = 1.2, each incoming flow is blocked and could only progress
as far as the end of the curve shown by short dashes (after which the curve must turn back
into its paired version, like the blocked u(x) functions in Figure 2). The block can be
overcome by a bore travelling to the left over the flat plain, and we show two such bores in
each part of Figure 5.

Each full line shows a bore which overcomes the block with minimum energy
dissipation —E()3) in (13). When the outgoing flow from the bore reaches the apex it
bifurcates according to Theorem 2(i), abruptly so over the parabola and smoothly so over

the quartic. For the subcritical incoming flow, solving k +(A3) = 1.2 delivers the
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Free surface profiles illustrating relief of blocking.
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minimum bore strength A3 = 1.03, and the immediately outgoing flow has F+ = .50y
e 1.30,d i 6.73. These values are recoverable, after the bifurcation, downstream on
the flat plain to the right of the mountain, as shown. The bifurcation also makes available
a supercritical flow to the right of the apex, and when this reaches the flat plain it has

F+* =1.82: u+* =3.08 d+* = 2.86 as shown. The supercritical incoming flow has
minimum bore strength A3 = 2.17, and the immediately outgoing flow has F+ = 0.49,
n, = 196 d = 6.52. These values are also recoverable, after the bifurcation,
downstream of the mountain, as shown. The bifurcation also makes available a
supercritical flow to the right of the apex, and when this reaches the flat plain it has the
values F: = 184, u+* =3.03, d_: = 2.72 shown.

The long dashes in Figure 5 illustrate how a bifurcation in the free surface is
avoided if the bore dissipates more energy than the minimum value —E()3), with a bore
strength A lying strictly within the range (30). For the subcritical incoming flow we have
chosen A = 1.07 > 1.03 with k+ = 1.52 > 1.2, so that on the flat plain F+ =45
n = 12, d+ = 7. For the supercritical incoming flow we have chosen A = 2.33 > 2.17
with k+ = 1.88 > 1.2, so that on the flat plain F

=040, u, =105 d _="7.

- -
The bores in Figure 5 are shown when they are in the same place, for convenience,
but they will be moving at different speeds to the left as given by (40) and (15). The
speeds —C(A3) of the weakest bore which unblocks the subcritical and supercritical
incoming flows are 1.24 and 0.22 respectively. The speeds of the stronger bore, which

dissipates more energy, are 1.32 and 0.42 respectively. Bores which unblock the

subcritical flow are evidently much faster than those which unblock the supercritical flow.

7. Summary of Solutions

In §3 we discuss continuous steady flows in the presence of an obstacle having apex
height a. When the incoming k > a, the flow passes freely over the obstacle. When
k = a, the fluid surface and the velocity each exhibit a bifurcation over the apex. For a

family (5) of monotonic mountains we show, in Figure 2, how the local features of this




bifurcation are strongly dependent on the local shape of the mountain profile. In

particular, the bifurcation is usually smooth, which seems not to have been pointed out
before. There is an exceptional case in which the bifurcation is abrupt, over the parabolic
mountain, but only this last case has been reported in the literature, as far as we are aware.
When k < a, the flow is blocked and cannot surmount the obstacle unless an upstream
bore intervenes, which makes the flow discontinuous.

Blocking can be relieved by a bore moving upstream away from the mountain. This
creates a discontinuous pseudo—steady flow which lifts the fluid so that it can flow over the
mountain, as illustrated in Figure 5. Bores in the same family (16) can also exist as
alternatives to an incoming flow which would be already free, or at least bifurcate over the
apex, even though such bores are not then needed to relieve blocking. The main properties
of all these bores are described in Theorems 1, 2 and 3. Theorem 4 describes pairs of
steady continuous flows which can co—exist, in particular on the two sides of a bore,
including those in Figure 5.

Theorems 1, 2 and 3 include, for the first time, complete information about the
strength A of such bores of type (16). This fact allows us to summarize our results
unambiguously in a three dimensional space spanned by ¥ >0, a/d_>0 and A2 1.

For clarity we show first, in Figure 6, the single valued surface in this space which
describes the weakest of such bores. These are the bores which, according to Theorem 3,
dissipate the least energy.

If one chooses to adopt that physical hypothesis, then the only bores (16) which
remain in Theorem 2 are those with strength A3 in (30), (33)2 and (38), and those with
strength A; in (39). The weakest bores in (33); and (37), are only nascent ones, which
will not actually be noticed. The continuous surface shown in Figure 6 therefore consists
of two contiguous smooth parts ABCE and CED, which join at a crease CE across
which the surface has a discontinuity of gradient. The part ABCE has equation (20),

which is an implicit definition of a function

Y= AdE Al (56)
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We recall that A3 is defined by the condition k+()\3) = a that the outflow from the bore
will bifurcate when it reaches the apex. The part CED is a cylinder, parallel to the

a/d_ axis, with equation

A= MF ) (57)

where the function on the right is defined by (19), and a bore with strength A, is
stationary.

BCD is the intercept of the composite surface with the vertical plane F_ = 6, and
for F_ > 6 our theory shows that there are no additional features. The surface ABCE
has three other boundaries. It actually meets the plane A =1 in the curve AE, whose
equation is

3
8 o p L85 (58)

from (20) with A3 =1 there. The surface otherwise lies in the half space A > 1,
representing the condition that the bore must face upstream. The coordinates of A are
F =0, a/d =X=1 andthoseof E are a/d_=0, F_=A=1

The space curve AB is
Ao gl = ald (59)

This is the common boundary of the conditions u, > 0, that the bore cannot stop or

+
reverse the flow, and k 4 > a, that the outflow from the bore shall not be blocked. The
curve AB terminates the surface (56) in that direction; any point on AB represents a
bore moving away from the mountain at a speed ((Ao + 1)/2A o)’} which is just enough to

reduce the outflow from it to what is required to maintain a reservoir of still water

(u i 0), between the bore and the apex, whose depth is the height of the mountain




Figure 6.

Weakest bore strength surface A = A(F_, a/d_), representing
bores which dissipate least energy.

a/d
10

Figure 7. Available bore strengths (30), (33), (37), (38), (39) if more
than the least energy can be dissipated.




The space curve CE is

X R ) = ajd ) (60)

in terms of (56) and (57). This represents the weakest bore in both (38) and (39); any
point on CE therefore represents a bore which is stationary and with an outflow which
bifurcates at the apex, and for which F_ = 7 as described by (26). We could write (26)
more explicitly as A3(7, a/d_ ) = Ay(7) to emphasize that 7y dependson a/d_ .

The cylinder CED has one other boundary ED, where it meets the plane
a/d_ =0 corresponding to the case of no obstacle. Any point on the interior of CED
represents a stationary bore (in an incoming flow which would otherwise be free anyway)
which minimizes the energy dissipation among other bores (16) which could move away
from the obstacle. Such a stationary bore has an outflow which will pass freely over the
obstacle, because such A; > X3, as Figure 4(d) illustrates for F_ > 4. Bores which move
towards the obstacle would dissipate even less energy than the stationary one, because the
extension of ABCE passes below ECD, but they would run up against the obstacle after
a finite time, which is why we excluded them at the beginning of §5.

Any point on the interior of ABCE represents a bore moving away from the
obstacle which minimizes the energy dissipation among other such bores (16). The precise
location of that point on ABCE will determine whether the flow in which the bore can
exist would be otherwise blocked (as in (30)), bifurcating (as in (33)2) or free (as in (38)).
We omit the latter information from Figure 6, but introduce it into Figure 7.

The condition A = Ao(F_) defined by (18) represents zero outflow u, =0 from a
bore, and in Figure 7 it is shown as a part AHBC’D’E’OA of a cylinder parallel to the
a/d_ axis, meeting the plane a/d_= 0 in the curve D’E’O. The possible bore
strengths calculated in (30), (33), (37), (38) and (39) lie between that surface
AHBC’D’E’OA and the lower surface AHBCDEOA. The latter is already shown in

Figure 6, and repeated in Figure 7. Points C’, D’ and E’ are vertically above C, D

and E respectively. O isthepoint F =a/d =0, A =1
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The surface CEE’C’C is part of a vertical cylinder, parallel to the A axis, with
equation (60);. Each point within the three dimensional region CEE’C’D’DE
represents a bore (39) which can exist as an alternative to a supercritical incoming free
flow.

The surface AE’HEA is part of another vertical cylinder, also parallel to the A
axis, with equation (58). Each point within the three dimensional region bounded by
AE’HEA and the two surfaces AHE’A and AHEA, which is shaped like the segment of
an orange, represents a bore (30) which can relieve blocking, in circumstances where no free
flow is possible. The point H has coordinates F_ = 4.47, a/d_ = A = 6.90.

Each point within the three dimensional region bounded by the part AE’EA of the
vertical cylinder (58), the part AE’OA of the cylinder A = Ao(F_ ), the part of AEOA
of the base plane A = 1, and the part OE’EO of the plane a/d_ = 0, represents a bore
(37) which can exist as an alternative to a subcritical incoming free flow.

Each point on the part AE/EA of the vertical cylinder (58) represents a bore (33);
which can exist as an alternative to a subcritical incoming bifurcating flow.

Each point on the part HE’EH of the vertical cylinder (58) represents a bore (33),
which can exist as an alternative to a supercritical incoming bifurcating flow.

Each point within the three dimensional region bounded by the part HE’EH of the
vertical cylinder (58), the part HE’C’BH of the cylinder A = Ao(F_ ), and the part
HECBH of the surface (56), represents a bore (38) which can exist as an alternative to a
supercritical incoming free flow.

Free flows with no bore have A = 1, and can therefore be represented on the base
plane A =1 of Figures 6 and 7. Therefore, we complete our three dimensional
representation of the flows established in this paper by showing, in Figure 8, the free flows
added to Figure 6, and the same could be done for Figure 7. Again, nothing significant is
omitted by our restriction to F_ < 6 in Figure 8. It shows the curve AEJ, whose
equation is (58) with A = 1, and the lift of part of that curve to AEH on the surface

AHBCEA. The curve AEJ divides the plane A = 1 into three parts, representing
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Figure 8. Free flows and weakest bores.
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Figure 9. Plane classification diagram.
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blocked flows (for a/d_ values greater than that in (58)) and free flows (for a/d_ values
less than that in (58)). The free flows are subcritical in the sector AEO, and
supercritical on the other side of E (F_ =1 at E). The surface AEHA portrays those
bore strengths which can relieve blocked flows and have minimum energy dissipation, and
the remaining part EHBCDE portrays the other bores of Figure 6. The available bore
strengths shown in Figure 7 can be added to Figure 8 to complete the three dimensional

representation of our results.

8. Classification Diagram

We can now see from Figures 7 and 8 why a "classification diagram" in the
F_,a/d_ plane alone, which is how results in the previous literature have usually been
summarized, is incomplete and ambiguous. The diagram given by Broad, Porter and
Sewell (1992b, 1994), and shown in Figure 9, is essentially a projection of Figure 8 onto its
base plane. The projection process removes the information about the bore strengths,
which was not available in the previous literature anyway, and is obliged to present bores
and certain free flows in the same two—dimensional regions when, in truth, they belong to
different three dimensional regions, as Figure 8 makes clear.

Curve AEHJ has equation (58), and expresses the condition k =a for the
incoming flow to be a bifurcating flow. Points in Figure 9 which are in the E: sald
plane but which are above the curve AEHJ represent blocked flows; points which are
below it represent free flows, either subcritical within AEO or supercritical within JHED.

Curve AHB has equation a/d_ = Ao(F_) or

e[

T +1

(61)

Points within the region AHE represent bores which can relieve the blocking. No such
bores exist within the region above AHJ. Bores cannot be an alternative to the

supercritical free flow possible within JHB.

L e e e e
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Curve EC has equation (60) or

3
il (1 +8F_2)/2 3 ey

a
T i bt = {92)

Bores moving away from the obstacle can be an alternative to the free supercritical flows
possible within BHED. Such moving bores, or stationary ones if dissipation is minimized,
can be an alternative to the free supercritical flows possible within CED.

Classification diagrams of this type which are given by other authors, including
those referred to in §1, are confined to the small rectangle 0 < F_< 2.5, 0<a/d_<1.25.

They therefore omit the intersection point H and the region JHB in particular.
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