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ABSTRACT

An alternative approach to the definition of balance using an energy
principle is presented. In middle latitudes it reduces to Lagrangian
semi-geostrophic theory. Numerical calculations are shown which illustrate

how such a balanced state can be found by iterative methods.
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1. INTRODUCTION

The question of "balance" in the atmosphere is still important in the
design of numerical forecasting systems, especially in improving data
assimilation methods. Many centres follow an analysis step with explicit
initialisation, usually normal mode initialisation e.g. Temperton and
Williamson (1981). Continuous assimilation methods, e.g. Lyne et al
(1982), have to be designed to converge to some sort of balanced state. 1In
both these cases the notion of "balance" is not explicitly written down,
but it is imagined that there is a slowly varying subset of the solution of
the model equations which is relevant to weather forecasting and in some
sense defines "balance". This is often referred to as the "slow manifold",

Leith (1980).

With increased use of higher resolution models and interest in
forecasting actual weather elements such as cloud as well as the pressure
distribution, it is necessary to be more precise about the meaning of
"balance". A particular problem arises with the treatment of detailed
vertical structure, important in forecasting clouds. The normal mode
definition of balance only makes sense if the vertical scale is large
enough for the gravity wave speed to be much greater than advection speeds.
However a discontinuity in the vertical, such as an inversion, can still be
in thermal wind balance. Furthermore the restriction to slowly varying
solutions, at least in the Eulerian sense, would prevent the inclusion of

moving fronts or other sharply structured systems.



An alternative approach to balance is to define a balanced state as
the solution of a set of filtered equations. The close relationship
between normal mode initialisation and quasi-geostrophic theory was
described by Leith (1980). This approach can be made rigorous if the
existence and uniqueness of solutions to the set of filtered equations can
be proved. For practical usefulness, any filtered system used must have a
solution, though possibly an uninformative one, in the tropics, and must

include diabatic effects.

In middle latitudes the need to treat sharp vertical structures
suggests the use of semi-geostrophic theory, Hoskins (1975). This theory
is normally used together with the geostrophic coordinate transformation,
Blumen (1981), to derive analytic solutions. Such solutions can only be
obtained on an f plane and break down in a finite time. However, Cullen
and Purser (1984) showed that the Lagrangian equations can be solved in
real space for indefinite periods of time, producing locally discontinuous
solutions. Cullen, Chynoweth and Purser (1986) applied this method to
mountain flows. Cullen et al (1986) showed that this set of Lagrangian
equations could be derived from an energy minimisation principle that made
sense globally. At the equator the solutions reduce to a trivial static
balance with zero horizontal pressure gradient. The solutions are unique
if required to be statically, inertially and symmetrically stable.
Convection is therefore represented as an instantaneous jump of a parcel
between two equilibrium positions. In this sense the theory becomes a

three-dimensional extension of parcel theory.
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The above work suggests that the energy principle could be used to

remove some of the limitations of the definition of balance discussed above
since it is well-defined and allows the treatment of discontinuities. 1In
section 2 we set out in more detail the types of motion admitted and
excluded by the definition. 1In section 3 we set out numerical methods to
derive balanced solutions by iteration. Section 4 includes results which
illustrate that a discontinuous balanced state can be reached in a simple
two-dimensional problem and that an overall balance can be reached on a
hemisphere. The rate of convergence to this balance is analysed and shown
to be strongly scale dependent, as would be expected from geostrophic

adjustment theory, Blumen (1972). The results are discussed in section 5.

2 DEFINITION OF BALANCE AND PROPERTIES

Energy principle. For simplicity we set out the equations of motion using
the z coordinate defined by Hoskins (1975) and the form of Boussinesq
approximation and simplification of the lower boundary condition used

there. The primitive hydrostatic equations are then

IR TR
g{ + %3 + fu=F, (2.2)
gg g (2.3)
gg 0 86/eo (2.4)
R R e L (2.5)

o 0 Lo

e 3y Sale 0 (2.6)



Wm0 P o e 0 H (2.7

The notation is standard. Q is a forcing term and 6, a reference value of
potential temperature. F, and F, are the x and y components of the
frictional terms which depend nonlinearly on u. The appropriate energy

integral was shown by Hoskins (1975) to be
E = gi 1/2(u2 + v2) - gez/eo; dv, (2.8)

which is expressed as the difference between the actual energy and that of

an isothermal basic state at rest.

To motivate the definition of balance consider the physical model of a
rectangular container part full of water. The minimum energy state is for
the water to be at rest with a horizontal surface. This surface can
support "unbalanced" waves. Now suppose that the container is divided by a
wall which rises above the water level. Move this wall laterally so that
the fluid levels are different on each side of the wall. The energy
increases because of the work done in moving the wall. According to our
definition a slow "balanced" evolution is for the water surfaces to stay
flat at all times. The real evolution would also contain transient surface

waves unless the wall is moved extremely slowly.

Cullen et al (1986) define a balanced solution of (2.1) to (2.7) in
two stages based on the physical argument above. Assume that a balanced
state is characterised by bounded pressure gradients at all times. Then
seek to minimise the energy integral E with respect to (instantaneous) -

parcel displacements. The boundedness of the pressure gradient means that




its effect on the momentum can be neglected during the displacement, but

the Coriolis effect cannot. Thus the horizontal momentum components will

change according to the equations

u - fy = 0 (2.9)
v + fx = 0, (2.10)

where the dot is a virtual time-derivative following the displacement.

Potential temperature will be conserved, so that

8 = 0 . (2.11)

It is then proved that E is minimised with respect to this class of
displacements if the flow is in geostrophic and hydrostatic balance and is

statically, inertially and symmetrically stable.

The second stage of the definition states that a balanced evolution is
through a sequence of minimum energy states. The evolution is driven both
by the forcing terms and because a general geostrophic and hydrostatic flow
is not a solution of the time independent equations of motion. The fluid
trajectories are determined implicitly by the energy minimisation. This
naturally leads to the equations, obtained by replacing the horizontal

momentum by its geostrophic value:

D (_p-1 3¢ i L
be. UEoay) teasom BN MaRy (2.12)
D_ (g1 3¢ 3¢ i
pe ) oGyt M Fy (2.13)




D (-1 29
Dt (8 eo az) = Q (2.1“)

together with (2.4) to (2.7). The energy integral which is minimised at

each time instant is

1 -1 3 TR
g /5 ¢ (g7 55)2 + (71 5;92)2 § - gez/60 av. (2.15)

The concept of energy minimisation is less obvious in this general
three-dimensional case. It requires the strict separation of the flow into
two time scales, a "slow" evolution time scale and a "fast" adjustment
which allows the system to remain close to minimum energy. It is shown by
Shutts and Cullen (1986) that this analysis, in particular the use of (2.9)
and (2.10) to define virtual displacements, only gives a "real world"
result when the fluid trajectories are nearly straight as is requiréd for
three-dimensional semi-geostrophic theory to be valid. Hoskins (1975)
states the condition as V/fr <<1, where r is the radius of curQature of the
trajectory. A similar theory applies to axisymmetric flow, as discussed by
Shutts and Thorpe (1978).

Existence and uniqueness of balanced state. Cullen and Purser (1984)

prove that this method leads to a unique solution for a finite dimensional
version of the problem on a convex physical domain (no mountains) and an
f-plane. This solution may be discontinuous. In global geometry the
existence is clear because the energy integral (2.15) is a bounded function
of all possible rearrangements which obey (2.9) to (2.11). It has not been
shown whether the solution is unique. Cullen, Chynoweth and Purser (1986)

show that solutions are unique in the presence of mountains because of the

»



A

physical requirement that no fluid can cross a barrier without first

reaching the top. The general uniqueness result requires inertial, static
and symmetric stability. In a moist flow where potential instability is
released, the balanced solution will give a convecting solution where fluid
is transferred instantly to its new equilibrium position. This illustrates
the inability of a balanced formulation to resolve motion on a fast

"adjustment" time scale.

Physical interpretation of balance definition. This definition of balance

treats semi-geostrophic dynamics in mid-latitudes explicitly, but excludes
gravity and inertial waves. Static, inertial and symmetric instability is
removed by instantaneous adjustment. The effect of diabatic and frictional
forcing is included and an ageostrophic response generated. Blocking of
the flow by mountains will generate a downslope current which transfers
mass at a prescribed rate across the mountain to a new position downstream;
however the transfer between the ridge top and the downstream position is
instantaneous. Drag is generated and energy dissipated. Mountain waves
are excluded. If moist potential instability is released, mass is
transferred at a rate prescribed by the forcing (e.g. boundary layer
convergence), the transfer between initial and final equilibrium positions
is instantaneous and the convective available potential energy is
dissipated. It is possible that under certain conditions a catastrophic
instantaneous transfer of a large amount of mass could be predicted if the

convection itself causes further destabilisation.



At the equator no horizontal pressure gradients are permitted except
across mountains. The flow is entirely implicit since the energy
minimisation depends purely on the stratification in the case f = O.
Surface friction cannot therefore be consistently included at the equator;
in reality it forms part of the unbalanced dynamics. Kelvin waves are
excluded and information transmitted instantly around the equator. The

response to an isolated heat source can be determined from the equations

30 - 3 28
3t =Q, %" y~"9:

99 sk

Lby =Q-Q ; (2.16)

here Q(z) is the average heating rate around the equator at a fixed z.
This is the standard lowest order solution for the equatorial response to
thermal forcing. The asymmetries calculated by Gill (1980) result from

transient waves and are not represented.

The axisymmetric version of the theory must be used to explain

hurricanes, and probably also certain mid-latitude depressions. It is thus

-~

necessary to be able to switch formulations when using this method to

calculate a balanced state with real data.

The limitations of this definition of balance are serious at low
latitudes, but not obviously more so than those of normal mode
initialisation. The proper inclusion of parcel convection is clearly an

advantage.
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3. ITERATIVE CALCULATION OF BALANCED STATE

Defining equations. A solution of the balanced equations (2.12) to

(2.14), (2.6) and (2.7) can be written in the form:

a_ _p-129 3¢ _ f2, -
[fu.V(-£7150) + £ 55 = £V = fF,]
(3.1)
= .a... [-. U.v 99 + 89]

oy 0z 0o
= e B~ m gh's B8

.g;_: " ?,5 + %‘;’ - 0 (3.3)
w = 0Oatz = 0, H . (3.4)

These equations should be sufficient to define the total balanced wind
field (u, v, w); and have been proved to be in the case of an f plane by
Cullen and Purser (1984) provided that ¢ + 1/2f‘2(x2 + y2) is a convex
function of (x, y, z). This is equivalent to the ellipticity condition

necessary in other formulations of balanced equations.

We consider iterative methods of calculating u in this paper. An
obvious approach is to introduce a pseudo-time variable t. Given a first
guess for u, the iteration takes the form of a pseudo-time integration
designed to converge to the solution of (3.1) to (3.4) as t » =, This is

set out below:

1




(i) Start with ¢ at time t which must satisfy the condition that

P(x,¥,2) = ¢ + 1/502(x2 + y2) (3.4)
is a locally convex function everywhere, where (x,y) are local &
horizontal Cartesian coordinates. This condition ensures that the

geopotential corresponds to a physically stable solution. Applying

this condition at the equator shows that ¢ has to take the simple form

o = d5(z) + y20q1(x,2) (3.5)

where y is the local north-south coordinate.

(ii) Calculate

_ -1 99 L =199 i 3¢ v
Vg f sx ' Vg f 3y U 8,78 x5 (3.6)
The values of ug and vg are bounded at the equator because of (3.5), P

but only the zonal mean of u, has any physical meaning as a wind

there. It is easily seen that v8 is zero at the equator.

(iii) Make a first estimate Ug1s Vg1, 89 of ug, Vg, 6 at time
t + At using a first guess value u, of u which satisfies the

continuity equation:

Ugq (t+at) = ug(t)-at(uy.Vug + gg = fv1 = Fay) (3.7) *
Vg (t+At) = vg(t)=At(uy.Vvg + 22 + fuy - Fyq) (3.8) '
g1 g ol VR v gy 1 vl $
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1 (t+at)

= 8(t)-at(uy.Ve - Q) .

(3.9)

The values of ug1, Vg1 61 will not be consistent with the thermal

wind relation, and so the value U, must be corrected.

y (iv) Calculate a new estimate u, of u as follow, using the

pseudo-time variable T:

3u2

0z

At z =0

Wo

. (v) Make

Ug2 = Ugq

du1q

9z
3V1

9z

ug) -

111)+

AT(g/eo -— -

A't(g/eo -— 4

A
o}

(va-v1) = Bt (-2(tvgy) + -2(fugy))

(V2"V1)=0

3u2 3V2
( ax " 8§

ay ox

) dz .

(3.10)

(3.11)

(3.12)

(3.13)

new estimates Ugo, Vg2, 62 of Ug, Vg and 6 at time t+At:

- at((up -

up).Vug = vy = 49) .~ Fua s+ Fuy)

_ll1).VVg + f(U2 0 Fy1 + sz)

92 = 07 - At(_liz ” '111).V9 .
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(3.16)



Repeat to convergence to specified tolerance. The value of ¢(t+At)

at z = 0 is determined from the values of ug and Vg there.

Properties of the iteration. The properties can be illustrated most »

easily by considering a two-dimensional problem. Suppose that at time t .
the solution is ¢ = ¢°(x,z) with 6° and vg0 determined from (3'6)f The

effect of solving equations (3.7) to (3.9) can be considered as adding an
unbalanced perturbation to this basic state. The convergence of the

iteration will then mirror the evolution of this perturbation according to

the linearised primitive equations (2.1) and (2.2), since the updating of u

and v in equations (3.10) and (3.11) is only an approximation to the

pseudo-time derivatives . Assuming a solution proportional

to el9T, the analysis of Hoskins (1974) gives
02 = N2 sin %A - 252 sin A cos A + fr cos? A £3.17)

where

(o] (o] (o]
N2 - &/ a8 liis 82w 8/e 98 £ ok ovg L (3.18)
(o] (o]

and A is the disturbance orientation measured from the horizontal.

Therefore, if the potential vorticity

q = fzN2 - gH (3.19)
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is negative, the perturbations amplify and the iteration will diverge. It
is therefore necessary to ensure that the data presented to the iteration
is statically, symmetrically and inertially stable. Ideally a slantwise

convective adjustment (Emanuel, 1983) should be performed first.

The convergence is achieved by wave dispersion and the rate will
depend on the frequency o. The approach to the solution will be determined
in the same way as in standard geostrophic adjustment (Blumen, 1972).
Because the range of possible frequencies is very large, the rate of
convergence will be highly scale dependent. The generation of waves during
the iteration may lead to initial divergence from the solution on scales

associated with low frequencies.

Practical implementation. The above presentation has been in z

coordinates to simplify the equations. This does not allow prediction of
the surface pressure. For practical implementations the scheme has been
used in o coordinates, with iteration also required to satisfy surface
geostrophic balance and the constraint (3.12) removed. The iteration as
set out above is explicit, it can also be reformulated using a standard
semi~implicit algorithm to allow the "time step" At to be increased. In
this case the values 67, ugq, and vgq in equations (3.10) and (3.11) and
(3712) are replaced by values 6, ugp, Vgp defined by equations (3.14) to
(3.16). The resulting implicit system of equations is then linearised and
decomposed in the standard way, e.g. Hoskins and Simmons (1975). This

method is analogous to taking a backward implicit time step when solving
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the primitive equations, which leads to damping of gravity waves. In our
case it leads to damping of the residuals in equations (3.10) and (3.11)
and hence faster convergence.

4, NUMERICAL RESULTS

Two-dimensional case. We first illustrate the difference between an

explicit and backward semi-implicit implementation of the iteration. The
data used are for a two-dimensional frontal model as described in Cullen
and Purser (1984), with discontinuities forming at the lower and upper
boundaries and peak geostrophic winds of 20 ms~!'. The residual after

iteration for a time interval 10 At is shown in Fig. 1 as a plot of

_ -1 99
Vg £ 5 (Mt1)

There are large values at the surface and upper front of the residual in

the thermal wind-and a large value of the residual in the surface .
geostrophic balance. Away from these areas is a large region where there
is a residual of 1 ms“?, about 5 per cent of the maximum vg. Using the
implicit iteration, Fig. 2, removes almost all the residual except near the
front. Continuation of the explicit iteration to time interval 20 At gave
similar results to Fig. 2. Thus a useful improvement in convergence rate

has been achieved.

Three-dimensional case. We illustrate the residuals for a hemispheric

implementation. The initial residuals are generated by one 15 minute time
step of the form (3.7) to (3.9) including diabatic effects. The implicit -

version of the iteration was used and the convergence analysed by splitting
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the residual into the vertical normal modes appropriate to an isothermal

basic state of 300°K. The variance in each mode is plotted against number
of iterations for zonal wave numbers 1,6 and 15 averaged over the regions
0° to 30°N and 30° to 90°N. Convergence in the external mode,

Fig. 3, occurs within a few iterations, irrespective of horizontal scale
and latitude. Convergence in the fourth internal mode, Fig. 4, takes of
the order of 8 "hours" and the residuals increase during the first 4
"hours" of iteration. In low latitudes convergence takes over 12 "hours".
In the highest internal mode, Fig. 5, convergence takes 12 "hours" in
middle latitudes but never really takes place in low latitudes. This

behaviour is entirely consistent with linear geostrophic adjustment theory.

5. DISCUSSION

The fact that convergence could be obtained in the hemispheric
iteration apart possibly from the highest resolvable mode, which is mostly
noise, is consistent with the existence of the balanced state discussed in
section 2. However the convergence rate is very slow and it is likely that
direct rather than iterative methods will be needed to compute it in
practice. A possible approach is discussed by Cullen et al (1986). In an
integration of a primitive equation model the solution will attempt to
maintain a balanced state by generating an ageostrophic circulation in a
very similar way to the iteration used above. Thus if the time scale of
the dynamical and physical forcing is shorter than the convergence time
scale of the iteration, a balanced response is not to be expected and a

free unbalanced wave response will be generated. The diagnostic study of
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Errico (1984) illustrates this for the NCAR model. The scales on which

balance is maintained agree with those expected from the convergence rate

shown in this paper.

It is an open question whether this scale dependence of the ability of
the atmosphere to maintain balance is a correct physical description of the
atmosphere or is a defect of current model formulations. It is hoped that

further work will clarify this important issue.
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LIST OF FIGURES

Figure 1

Figure 2

Figure 3

Figure U4

Figure 5

Error in iteration to thermal wind balance in two-dimensional

model using explicit iteration.

As Fig. 1 using semi-implicit iteration.

Residual variance in iteration to balanced data projected onto
external mode. Three zonal wavenumbers are shown: (a) area
averaged from 30°N to 90°N, (b) from O°N to 30°N.

As Fig. 3 but for fourth internal mode.

As Fig. 3 but for highest internal mode.
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