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ON THE TIME SAVING THAT CAN BE ACHIEVED BY THE USE OF AN OPTIMISED
COURSE IN AN AREA OF VARIABLE FLOW

1. Introduction

In planning routes between well-defined points of departure and arrival,
both aircraft and ships can take into account forecast values of certain
geophysical parameters so that the route chosen is in some sense
optimised. For aircraft flying the North Atlantic the methods used are
described in the papers by Attwooll, Bennett, and Monk (all 1982). There
have been a number of papers on ship-routing: that by Motte and Calvert
(1988) has the most comprehensive bibliography. However it should be
noted that whereas for aircraft the dominant consideration is the wind,
for which the maritime equivalent is the current, ship-routing on the

trans-oceanic scale is dominated by considerations of waves. However on
smaller scales currents can be the dominant consideration: for example
see the paper by Fales (1991). That paper does not make use of the basic
theory that was applied to the aeronautical problem in the 1940s.
Although the work reported here is orientated to aeronautical
applications, it <clearly has ramifications for certain maritime

problems.

The calculation of optimum routes for aircraft across the Atlantic has
an interesting history. The fundamental theory was well understood in
the 1940s but at that stage there were no computers on which it could be
implemented directly. Consequently graphical methods were developed
which could be applied to the meteorological charts which were available
then. The methods and the basic theory are described in Sawyer (1949)
and the basic theoretical results will be repeated in section 2 of this
paper. In the 1970s wind forecasts started to be produced by computer
and it was clearly possible to develop computer algorithms for
determining the minimum-time tracks. However the algorithms in use today
are not based on the basic theory: they are based on considerations of
networks of possible routes. In the context of the organised track
system over the North Atlantic this approach is reasonable, but for more

general applications reference to the basic theory is desirable.




The motivation behind the present work was to answer the question of how
much time could be saved by the use of optimal routes in other sectors
of airspace. In discussing the economics of the North Atlantic Air
Traffic System, Attwooll (1986) comments that "The North Atlantic is a
very windy place". It is also true to say that the North Atlantic is a
relatively easy place to implement a meteorologically dependent route
structure. It is clearly beyond the scope of the current study to
address the issue of the feasibility of meteorologically dependent route
structures in other sectors of airspace, but it is recognised that this
is a very significant issue. However it is noted that Area Navigation
(RNAV) routes are now being set up across Europe: although they will not
be able to support the flexibility that is available in the North
Atlantic, in assessing their value meteorological factors should be

taken into consideration.

It was considered desirable to obtain a result which was as general as
possible, i.e. it would not be dependent on current route structures as
the possible utilisation of optimised routes in the future would render
these obsolete. Therefore of necessity the present work can reasonably
be regarded as being somewhat academic, but it was considered a sensible
preliminary to more practical studies to be done in the future. The
original intention was to consider potential time-savings in European
airspace: interest then arose in potential savings in trans-Asia routes.
Because evaluating the latter required accessing data from a global
model the work was extended to evaluate savings globally, omitting the

portions of the globe poleward of 72 .

The theory as developed in the 1940s did not provide a simple algorithm
for how much time would be saved by the use of an optimal route. In the
present work such an algorithm is derived, although care has to be taken
with its application. Section 2 of this paper revisits the the basic
theory, and describes the algorithm to be used for calculating the
time-saving. Section 3 discusses the results of applying the algorithm
to atmospheric data, but of necessity the algorithm is something of an
approximation. Section 4 describes a case study of time savings in the
North Atlantic in which the results from the algorithm are compared with

a direct, more accurate calculation.Section S5 draws conclusions and



makes suggestions for further studies.

appendix.

The algorithm is derived in the



2. Theoretical aspects

The equation for the path of least time, quoted by Sawyer (1949) is

s (1)
dt an
where d6/dt is the rate of change of the aircraft’s heading and 8u/dn is
the rate at which the wind component in the direction of the aircraft’s
heading (tail wind) varies in a perpendicular direction. This equation
ignores the curvature of the earth but Sawyer quotes a correction term

to allow for this.

In the following we are going to extend the above theory in a way which
will enable us to gain understanding of the nature of optimum tracks in
generalised wind fields. The extension to the theory makes use of the
approximation that airspeeds are in general an order of magnitude
greater than wind speeds, which is generally true for transatlantic
transport aircraft of the 1990s, although it would not have been nearly
so applicable in the 1940s. Although do6/dt will be the same for aircraft
now as it was 50 years ago, the rate of change of heading with distance

along ground track will be much less.

Now, let us define y to be the drift angle, x to be the ground track
angle, v to be the component of wind perpendicular to the aircraft’s
heading, and A to be the aircraft’s airspeed.

From these definitions it follows that

7+0 =Y (2)

and tan ¥ = v/A (3)
If v « A, then from (3)

G (4)

Assuming constant airspeed, then from (4)

d 18 a
1 = Y T (5)

dt A Bt 3s
where s is distance along a line parallel to the aircraft’s heading.
Now, using (1), (2) and (5)

i (6)
én ds




A further relationship that we wish to use is

EE + fz g Vav: = e the | vortielty. (7)

dn as
(This is an approximation only because u,v,n,and s are defined relative
to the aircraft’s heading which will in general vary only slowly along
the aircraft’s track. Thus, combining (6) and (7), we have shown that
the equation for the path of least time can be written

& wr (8)

dt
i.e. the rate of chnge of the ground track angle is equal to the

vorticity, a quantity which 1is independent of the aircraft’s
orientation.

This might seem a curious result and it is worth considering a simple
case to show that it is, qualitatively at least, plausible. Figure 1
shows a wind field in which the wind is everywhere northerly or
southerly, with the wind speed being proportional to distance east-west
from the centre line. We could imagine this to be a portion of a trough
with it axis running north-south. It will be noted that the vorticity of
this wind field is constant everywhere. Also shown are approximate
minimum time tracks between two pairs of points, A and B are on the same
north-south line while C and D are on the same east-west line. The
minimum time tracks between A and B are flown by first pointing the
aeroplane towards the stronger tail winds and then changing the heading
steadily with time so that the aeroplane arrives at the desired point.
In contrast, the tracks between C and D are flown at constant heading,
either due east or due west, and the aircraft deviates from the straight
line path as a result of the cross-winds. In figure 1 the optimum tracks
were drawn as arcs of circles: this is a slight approximation because
although the rate of change of track angle with time will be constant,
due to variations in ground speed the rate of change of track angle with
distance along ground track will vary slightly. Apart from that factor
the ground tracks are realistic for an aircraft with an airspeed of 250
m/s (486 knots): the figure represents an area 1000km by 1000km (540nm
by 540nm).

Figure 1 prompts one to ask what time will be saved in such an idealised
case and the theoretical part of this study was aimed at answering the

specific question as to what time would be saved when flying across an



area where the vorticity is constant everywhere and the terms which
contribute to the divergent part of the flow are both zero. It may be
recalled that a horizontal wind field can be decomposed into a
rotational part and a divergent part. The vorticity is a function only
of the rotational part. Equation 8 strongly implies that terms giving

rise to divergence can be ignored.

As the appendix shows, the answer to this question is §2T3/24, where T
is the time that would be taken to fly across the area if the flow was
uniform. The formula is an approximation: there are terms in T° and
higher powers of T which can normally be ignored. As 1is suggested
qualitatively by figure 1, the result is independent of the orientation
of the aircraft’s route. For the case shown in figure 1, in which £ is

10%s™ and T is 4000s the time saved is 26.7s.

It is not immediately apparent that this formula can be applied to the
real atmosphere in which, in general, the vorticity 1is varying
everywhere. The approach 1lies 1in considering the variability of
vorticity on different spatial scales. Let us consider two portions of
the atmosphere, each having constant vorticity: an aircraft would take 1
hour to fly across the first in which the vorticity is Cl and 2 hours to
fly across the second in which the vorticity is cz' For the percentage

time saved across both to be the same, Cl - 2§2. Intuitive knowledge of
the atmosphere suggests that this is unlikely, it is more likely that
Cl < 2§2, and if this is true for a range of scales then the time saved

in an area of variable vorticity can be estimated by considering only
the vorticity on the largest scale within that range. This assertion

will be tested in the next section.

The implication of this assumption is that time saved on a particular
flight will be dominated by consideration of the vorticity on the
largest scale relevant to that flight. This in turn implies that there
will be proportionately bigger savings on longer flights than short.
This statement is broadly correct, and is another reason why the north
Atlantic 1is an attractive place to introduce a meteorologically

dependent route structure.



On a philosophical note, it 1is commentworthy that the concept
underpinning the choice of optimum route is that of resonance. Both
equations (1) and (8) are expressions of equality between a frequency
(i.e. a quantity having the dimensions t-l) characteristic of the
aircraft and a frequency characteristic of the atmosphere. This concept
is exploited explicitly in the appendix, which uses the theory of forced

simple harmonic motion.
3. Calculation of global statistics of Cz.

Following section 2, it was considered desirable to derive a
"climatology" of squared averaged vorticity, here the averaging is
performed on a variety of spatial scales. The basic source of data was
archived analyses of 250mb wind fields obtained by the then Met Office
global operational NWP model (Bell and Dickinson, 1987). This model had
a resolution of 1% ° latitude by 15 ° longitude. Although it is possible
to calculate vorticity on a grid with the same resolution it was
considered that the values would be unreliable, so sets of 3*3 values
were averaged. Statistics were thus calculated for areas of

4;_ ° by sg ° 9" by “411 ° 18° by 22-12; and 36° by 45°.

In general all the statistics for the smaller areas within one 36° by

(]

45° block were lumped together but for the European sector (36° to 72°

north and 10° west to 35° east) seperate statistics were maintained.

The quantities calculated are the the temporally averaged squared
spatially averaged vorticities. The units used for vorticity2 are (knots
per degree latitude)z. In these units the time saved in seconds =
(C2T3)/24 where T is in hours.

Statistics were generated for winter 1990/1991, i.e. the months of
December 1990, January 1991 and February 1991. In principal several
years data (7 at least) should be use to generate a climatology, and
seperate climatologies should be generated for different seasons.
However we consider the present work to be a pilot study and that
therefore generating statistics pertaining to a single season is

worthwhile. In general the winter season 1is the windiest and as



relatively few aircraft fly in the southern hemisphere, northern

hemisphere winter was considered the most meaningful season to study.

First, however, results are shown which offer qualified support for the
hypothesis that certain scales can be ignored in the calculation of time
saved. In figure 2 the absissa is horizontal scale, ranging from 36° by
45° (scale 1) to 4% ¥

of mean squared vorticity. Results for all 32 sectors are displayed.

by Sg ® (scale 4), while the ordinate is the log

Also shown are straight line whose slope is such that if the real data
had that slope, then all scales would contribute equally to the time
saved. It is clear that the two smaller scales contribute much less than

the two larger scales.

Figure 3(a) shows the mean squared vorticities for all the processed
sectors of the world on the 360 by 45° scale. Figure 3(b) shows the
corresponding figures for the 180 by 22% oscale, figure 3(c) shows the
figures for the 9° by 11% ° scale and figure 3(d) shows figures for

the 4% 2 by Sg °scale.

These figures show that while the north Atlantic is an area where
considerable savings can be made, so is Europe.In order to determine the
likely time saving for a flight of a particular length, one should make
use of the figures pertaining to the scale which is commensurate with

the particular flight.

In the following, the literal interpretation of the numbers presented in
figures 3(a) to 3(d) is given. However, the direct calculation of the
time saving, described in section 4, implies that a more ad hoc

interpretation of the data is appropriate.

For the north Atlantic, it can be shown that the 18o by 22% °scale
contributes most to the time saved. A sector of this scale would
typically take approximately 3 hours to cross, so the time saved would
be (22.26 * 3%)/24 = 25 seconds. Thus the total saving on a six hour
flight would be of the order of 50 seconds. Other scales of course
contribute to the saving, so the total saving will be greater than this.

However the method as developed cannot accurately quantify the savings



in a field of variable vorticity, as exemplified by the superimposition
of two or more scales. Note also that in the north Atlantic the zonal
variability of the wind field is rather less than the meridional, so it
would have been more accurate (given that most flights are roughly
parallel to lines of latitude) to wuse sectors having different
proportions: this would almost certainly give an increase in the

estimate of the time saved.

Another cause for underestimation is the fact that the theory neglects
the curvature of the earth. If this is taken into account, the values
shown in figure 3(a) should be increased by approximately 16%, while for
the smaller scales the increase is much less. If scales greater than the
36o by 45° scale are addressed then this factor is of course much

bigger.

Figures 4(b), (c), and (d) are analagous to the corresponding figure 3s
but show the breakdown for the various areas of Europe. These are
presented because there are considerable variations in meteorology over
Europe, and also considerable variations in air traffic density and
length of routes. Note that figure 4(a) is redundant because there is no

breakdown on this scale and therefore is not shown.

4. The direct calculation of the time saved through use of optimum

routes

In this section we will describe a method of obtaining the optimum route
by integrating equation (1), the time saved by using the optimum route
calculated this way and a comparison with the time saved calculated
using the algorithm AT = Z°T°/24. In principle, equation (1) is not
adequate for calculating the optimum route, since it defines the rate of
change of heading but does not tell us what the initial heading should
be. However, an iterative approach is perfectly possible, in which
routes are calculated for a sequence of initial headings, the choice of
heading being dependent on the results of previous calculations. If one
defines x and y axes (perpendicular) such that the route to be followed
is approximately parallel to the x axis, one can then integrate equation

(1) along the route until the x coordinate is equal to that of one’s



desired point of arrival. If one notes the y coordinate at that point on
the route, it is in general found that such y values are a monotonic
function of the initial heading. The choice of heading for the next
iteration is made assuming that the dependency of the final y on the
initial heading 1s a linear function. There is, of course, no
theoretical justification for such an assumption, but it allows the

iterations to converge rapidly on the required solution.

In fact, rather than use equation (1), equation (8) was used: it was
shown in section 2 that these are essentially equivalent. The use of
this equation is not quite as straightforward as might appear because
the conversion from rate of change of ground track angle to curvature of
ground track depends on ground speed, which is a function of wind speed
and direction, airspeed and of course ground track angle itself. In the
procedure adopted, the ground speed used 1in each increment was
determined using the initial ground track angle: this is a slight
approximation, but with increments in x of 50km the error is almost

certainly negligible.

In the calculation, x and y are coordinates in a polar stereographic
projection and this projection is used in the figures that follow. It
will be recalled that in a polar stereographic projection a great circle
route is the arc of a circle. The radius of curvature of this circle is
calculated before simulations for the particular route start, and this
curvature increment is added to the curvature calculated from the
vorticity before each increment of the route is calculated. In this way
the fact that equation (8) ignores the curvature of the earth is
corrected.

Figure 5(a) shows the optimum routes between three plausible entry
points into the North Atlantic organised track system and three
plausible exit points for eastbound routes. Figure 5(b) is analagous but
for westbound routes, and also shown in both figures are a subset of the
wind data used in the calculation. The wind data pertained to a case
during November 1991: this case was deliberately chosen as one with
sufficient wind for the optimum routes to depart markedly from great
circle routes. In the calculation it was assumed that the aircraft had a

constant airspeed of 500 knots. The wind data were for 200 mb
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(approximately 39000 feet), and were taken from the assimilated field of
the new operational limited area model (Cullen, 1991), which has a
horizontal resolution of approximately S50km. Although this model has
better horizontal resolution than any of its predecessors, it still
underestimates the magnitudes of vorticities near jet streams, so any
calculated time-savings using data from the model will be slight

underestimates.

However certain features of the optimum routes are worthy of comment.
The eastbound routes concentrate themselves into a relatively short
north-south distance, in order to gain maximum benefit from the jet
stream. Of the westbound routes, the southernmost shows a characteristic
"S" shaped pattern which is the optimum course for an aircraft which

wishes to fly obliquely across a prevailing jet stream.

The times taken for both optimum and great circle routes, both east and

west bound are shown in table 1.

Table 1.
mean time following mean time following time
great circle routes optimum routes saving
eastbound 2hrs 54 mins 2hrs 51 mins 3 mins
westbound 4hrs 14 mins 4hrs Smins 9 mins

Superficially it might seem surprising that the eastbound savings are so
much smaller than the westbound savings on the same routes, but it
arises from the fact that the times generally on the eastbound routes
are so much less than the westbound times, because of the strong
westerly flow. If one uses the formula AT = §2T3/24 inversely to infer
Cz from the time saved, one obtains 171.36 (knots per degree latitude)®
for the westbound routes and 141.84 for the eastbound routes, which are
tolerably close, given the geographical distance between the sets of

routes.
When the mean squared values of vorticity are calculated from the model

fields for the scales used in section 3, values of 181.08, 97.56 and
22.32 are obtained for scales 4§° by 5§°, 9° by 11i°, and 18° by 22§°

11



respectively. Thus it appears that the values for the technically
appropriate scale are too small, although if one uses the values for the
smallest scale one gets essentially the correct answer. This arises
because the conceptual model of an area of constant vorticity is clearly
not applicable to a domain straddled by a jet stream which will in
general comprise an area of strong cyclonic vorticity on the poleward
side and an area of strong anticyclonic vorticity on the equatorward

side.
5. Conclusions and suggestions for further studies

The main conclusion from the case study is that in order to obtain
approximately correct results one should use the values of squared
vorticity pertaining to the smallest scale. Thus to calculate the
average time saving for four-hour flight sectors over the North
Atlantic, on would take the figure of 83.19 from figure 3(d), multiply
by 43 and divide by 24, giving 221.84 seconds, or 3 minutes 41 seconds.
Although this might seem rather small, multiplied byt eh number of
aircraft flying the North Atlantic, it represents a significant fuel
saving. It should be borne in mind that the savings on longer flight
sectors will be greater, although it is difficult to quantify this from
the information presented. Thus it is considered that if one wants to
assess how great the savings for a particular set of routes would be,
one should first examine figure 3(d) to see whether this is an area of
the world where significant savings should be broadly expected, and then
perform a set of calculations for the routes envisaged, as suggested in

section 4.

A comparison with the time taken to fly a great circle route would be of
interest, but given that, at present, great circle routes are not flown
because of air traffic control constraints, this is still a somewhat
academic exercise. Thus any future study should probably consider two or

more plausible air traffic management scenarios.
In addition the operation of the aircraft should be considered: the

optimisation considered in the present work was that of minimising the

time taken to fly a particular route at constant airspeed and

12



constant flight level. This is sometimes the relevant criterion: on
other occasions aircraft minimise cost or fuel. Also it is desirable to
consider all phases of flight, rather than just the cruise phase as is

addressed by the present study.
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Appendix. Derivation of the time saving algorithm

In the following we are using a coordinate system fixed relative to the
ground, as opposed to the system used in section 2, which was defined
relative to the aircraft’s heading. Thus u and v do not have the meaning

they did in that section.

Assume that the aircraft is flying at an airspeed A, that it is changing
its heading at a constant rate w (= d9/dt of section 2) and the initial
heading is €. Given the spatial invariance of the vorticity and equation
(1), a contant rate of heading change is a plausible strategy. Then if
U,V are the components of the aircraft velocity (parallel to the x and y

axes respectively) relative to the air

U = A sin(wt+e) } (A1)
V = A cos(wt+g)
Assume that the corresponding components of the wind field are given by
o } (A2)
v = +Bx
From (A1) and (A2) it follows that
e, A sin(wt+e) - ay (A3)
= A cos(wt+e) + Bx (A4)
ground

We wish to set up differential equations governing the motion of the
aircraft, so in the following, we use x and y to represent the position
of the aircraft. Hence from (A3) and (A4)

_ dVground

5N = -Awsin(wt+e) + BAsin(wt+e) - aBy

¥ = A(B-w)sin(wt+e) - aBy
This is the equation of forced simple harmonic motion (see, for example,
Synge and Griffith (1959) p152), of which the general solutions are :
: e AU P9
where ¥ is the solution of the equation
y +aBy =0
The general solution of this equation is

14



e s s s

y = a sin(pt+¢) (A5)
where p = Vaf and a and ¢ are arbitrary.
Yo is given by

y, = A*(B—w)sin(wt+e) (A6)
A
where A. = 2 2
p-w

The consistent solutions for x are

_ap
- —E-cos(pt+¢) (A7)
B -A*(a—w)cos(wt+e) (A8)

From (A4), (A7) and (A8)
= Acos(wt+e) + apcos(pt+¢) - A'B(a—w)cos(wt+e)
ground

= A‘w(B—w)cos(wt+e) + apcos(pt+¢) (A9)

In the following we will assume that the aircraft wishes to fly between
two points having the same x coordinate so that we wish to minimise some
integral of V

ground'
Now we assume that when t

=AT, %

]
b

t
Using (A7) and (A8) we get

AT X%

Il
X

ap *
B cos(¢-pAT) - A (a-w)cos(e-wAT) = X,
ap *
5 cos(¢+pAT) - A (a-w)cos(e+wAT) = X,
: ap *
Adding, — cos¢ cospAT - A (a-w)cose coswAT = X (A10)
We wish to determine
AT
\'/ = b \' dt
mean 2AT ground
=AT
Using (A9)
1 * :
o= o {A (B-w)(sin(wAT+e)+sin(wAT-e))+a(sin(pAT+¢)+51n(pAT—¢))}

15




1

= = {A‘(B—w)cose sinwAT + acos¢ sinpAT}

Substituting for a from (A10)

| T . p R
Vmean = 7 {A (B-w)cose sinwAT +—&—tanpAT(A (e-w) cose coswAT + xo)}
A‘ P g
= g7 Cos€ {(B—w)sinwAT +-;r(a—w)tanpAT coswAT } * A 7;—tanpAT
write as
X P
s e Y cose * e tanpAT (A11)
*

where y = %T {(B-w)sinwAT +-§-(a—w)tanpAT coswAT}

The X term in (A11) is independent of w so it does not affect the
optimisation of route choice and we will disregard it for now.

Expand to third order in AT

*

3 2
Y =~ %T {(B-w) [wAT = EQ%T) ] + (a-w)BAT [1 - EQ%T) ][1 + -%—aBATz]}

(here we have used (A5) to substitute for p)
2
= A {(aB-wz)[l + B (208 - 280 - @) + o(AT“')]}

Recalling the definition of A'

2
v~ A[l A2 (208 - 280 - wz)]

¢;ﬁx occurs when w = -8, which is exactly what we would expect from (1).

AT® 2
1.6, b= A[l vz (208 + B )]
If aircraft is to follow straight line, w = a (this follows from (2) and
(5), with ¥ set constant).

Under these circumstances
2
2 o2 AE
Y = A[l o ?;]
» Improvement in speed by using optimum w compared with straight line
2

AT

=A~€-(2a8+82+az) cos €

16



2 2
ST 2 oAl 2
- A-g-(a+B) cos € = A-g-c cos €

Now define T as the time taken to fly across the region at the initial

heading € in still air, so that to a very good approximation T = 2AT,
and we derive the algorithm for the time saved as being §2T3/24. ThisiT
depends on the strength of the mean cross-wind (through the £ term) but
not on the strength of the mean following wind (which is the X term in
equation (A11)) which was disregarded. Assuming once again that
airspeeds are an order of magnitude greater than windspeeds, € will be
quite small and to a very good approximation T can be taken to be the

time taken to fly the route in still air.
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Figure 1. Shows a hypothetical wind field and approximate minimum time

tracks between points A and B and between points C and D.

Figure 2. Shows the logarithm of squared vorticity for 4 scales, where

scale 1 is 36° by 45° and scale 4 is 4%° by s§°.

Figure 3(a). Shows temporally averaged squared spatially averaged
vorticities, where the temporal averaging is for winter 1990-91 and
the spatial averaging is over areas of 36°by 45°. Units are (knots per
degree latitude)?.

Figure 3(b). As figure 3(a) but over areas of 18° by 22%0.

Figure 3(c). As figure 3(a) but over areas of 9° by 11§°.

Figure 3(d). As figure 3(a) but over areas of 4%0 by Sgo.

Figure 4(b). As figure 3(b) but giving detailed breakdown for Europe.
Figure 4(c). As figure 3(c) but giving detailed breakdown for Europe.
Figure 4(d). As figure 3(d) but giving detailed breakdown for Europe.
Figure 5(a). Shows minimum time tracks between three entry points into
North Atlantic airspace and three exit points, for eastbound flights.

Also shows a subset of the wind data used in the calculation.

Figure 5(b). As figure 5(a) but for westbound flights
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Figure 3(a). Shows temporally averaged squared spatially averaged

vorticities, where the temporal averaging is for winter 1990-91 and
the spatial averaging is over areas of 36°by 45°. Units are (knots per

degree latitude)?.



Figure 3(b).

lo
As figure 3(a) but over areas of 18° by 225-
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As figure 3(a) but over areas of 9° by 11

Figure 3(c).
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Figure 3(d).

As figure 3(a) but over areas of 4;0

by
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As figure 3(b) but giving detailed breakdown for Europe.

Figure 4(b).



As figure 3(c) but giving detailed breakdown for Europe.

Figure 4(c).




As figure 3(d) but giving detailed breakdown for Europe.

Figure 4(d).
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