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Dynamics of rotating fluids September 1986

Lecture 1: Basic theory

Equations of motion, continuity and thermodynamic energy

In the usual notation these are
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Here.ﬂ. = rotation rate of frame relative to which the velocity U is
measured, F and Q are the frictional force and diabatic heating per unit
mass, and ! is unit vector in the direction of apparent vertical. The

perfect gas equation p = PRT will also be assumed.
From (A) we can derive several important relations:
Total energy budget
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(so long as the bounding surfaces are rigid, or J:-)O at "infinity").

Vorticity equation

Defining :t.:_ = VXE_ ("relative vorticity") we find

%% + (2+22)Vu - (2+20).Vu + V(%)XVP = WF
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(a) Suppose (as seems reasonable) that the frictional force f
vanishes if the relative velocity W is zero. Then it is clear that,

if 4 = 0, then V@)x vP =0. So if V$)XVP $ O (baroclinic fluid) we




must have ! * O i.e. there must be motion. This is the

Jeffreys-Bjerknes theorem.

(b) For motion of a rapidly rotating fluid, the dominant balance (away from

boundary layers) is between the baroclinic term and the term CZ.LIV)E :

m%% : [v(4)< Vp]
(where the Z axis is parallel to .L). )s
From this:

(i) for a barotropic fluid we may conjecture a_! = 0

which is the Proudman-Taylor theorem; az

(ii) for a baroclinic fluid, considering the components of u

perpendicular to JL , we can derive the familiar thermal

o~

wind equation.

(c) For inviscid, adiabatic motion (and with no further

approximation) it follows that
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where © = potential temperature. The quantity in curly brackets

is called the Ertel potential vorticity. Result (D) is one of

the most important in fluid dynamics. (See Hide (1977) for further
discussion of (a) - (c). See Hoskins et al (1986) for more on
potential vorticity, and White (1978) for an elementary discussion

of energetics, and for references.)

Angular momentum: an example

The momentum equation of (A) can of course be used to derive a
conservation relation for angular momentum. We can, however, illustrate
some important ideas by adopting the reverse procedure - deriving one
component of the momentum equation on a sphere by considering the axial
angular momentum balance of a parcel of air (at latitude @) moving with
relative velocity U = (u,v,w) relative to the rotating Earth. See

diagram,
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If the mass of the parcel is PST,
its angular momentum A, about the

polar axis is
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(where F, is the zonal component of the frictional force per unit mass).
Using W= D\'/Qt, rN/Dt =V we derive, in only a few lines
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Of course, the same result can be derived by isolating the zonal ()
component of the vector momentum equation. The derivation used here
emphasises that a complicated equation may express a simple physical
principle. This is interesting in itself; but a further implication is

that we should be very careful how we approximate equations such as (E).

Divergence, spin vectors and helicity

for example, Hide (1976).

The vorticity and energy equations result from applying the
operations Ux and U. to the momentum equation. By applying V. and ux
instead we obtain equations for the divergence V-Q and }5"_2. The
latter quantity is related to the spin vector§5 gl.ﬁ/!’“which gives
the rate of change of direction of motion of a fluid element (measured
in the osculating plane of its trajectory). See Lecluyse and Neumann
(1986). Another quantity of interest is the helicity !i = g.g - see,




Hamiltonian formulation

The equations of motion may be written in Hamiltonian form. This
is of more than academic interest, because the conservation laws (for
energy, potential vorticity, &c.) arise as symmetry properties of the
Hamiltonian. Hence by making approximations in the Hamiltonian, and
deriving the implied equations of motion, we may ensure that analogues
of all the conservation laws are retained in approximate models. See
Salmon (1983, 1985) for details and further references.

Various fluid models

As well as the perfect gas model the following are often
encountered:

(i) Incompressible fluid

Nonhydrostatic motion may be allowed, but density}) is assumed
independent of pressure, andf:f(T) at most, this variation
being accounted for only in the "buoyancy" term of the
vertical momentum equation (the "Boussinesq approximation").
Incompressibility is often assumed in modelling the motion of
liquids (e.g. in oceanography and laboratory experiments).
It is also applied in modelling some atmospheric flows -
after appropriate scale analysis - in which casef:f(T,!) may
be the adopted functional form. Note that incompressibility
does not allow acoustic (elastic) modes to be produced.

(ii) Shallow water model

If the fluid is incompressible, homogeneous (JJ = constant),

shallow (depth h << horizontal scale of motion) and free

(F=Q=0) the governing equations reduce to
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(where ¥ = horizontal velocity vector)

This is the shallow water model. It is used in many
theoretical and numerical studies (see, for example, Salmon
(1985)). Note that gravity and rotational (Rossby) modes are
allowed; Longuet-Higgins (1968) gives a detailed account.
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The hydrostatic primitive equations

The forms used in GCMs and many forecasting models are
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Justification by scale analysis (for quasi-horizontal motion) is tedious
and will not be given here. Note that the above set is energetically
consistent, and that the shallow atmosphere approximation (r& a= Earth's
radius) has been made.

A useful Cartesian approximation to (G) is obtained by setting
§= 20 Sin& ,» neglecting the metric terms and using rectangular

coordinates :
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f = -f constant is the 'f-plane approximation'. f: f""ﬁﬂ ,where

p = constant, is the }-plane approximation'. These approximations are

widely used in theoretical studies.

The semi-geostrophic (SG) and quasi-geostrophic (QG) approximations

In (H), % = 2 +2vv). The SG approximation retains this

relation, but sets u:uj,v=vj elsewhere in the acceleration terms :
:D_ ua -f V. + _4; _3_E = Fx
Dt
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The QG approximation goes one step further, and sets Uz=V,in the

3

definition of the material derivative :
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Similar relpacements are made in the other prognostic equations.
For further details on SG, see Hoskins (JAS, 1975). Because V.Vj s O

neither SG nor QG implies gravity modes; they are therefore "filtered

]

models".

Vertical coordinate systems

For compressible atmospheres the following systems may be
encountered in conjunction with the primitive equations and filtered
models : height 2 , pressure p (or lnp, p " & ), potential temperature & .
= = © . The only identity which it is
c P{’Psu‘-‘u » € /9;;,.‘1.“ y ¥y
necessary to know (or to be able to derive quickly) is illustrated by

the transformation from p to ¢ of a horizontal derivative of any scalar
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There is currently great interest in the use of @ as vertical

coordinate ('isentropic coordinates'); see Hoskins et.al (1985).
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DYRAMICS OF ROTATING FIUIDS SEPTENBER 1986

LECTURE 2: THE 'PHILOSOPHY' OF LABORATORY EXPERIMENTS

Before embarking upon a more detailed examination of results from a
particular range of experiments, its is instructive to consider the underlying
basis for regarding laboratory experiments as contributing information relevant
to dynamical meteorology and oceanography. An intimately related question is
"what is meant by the term 'model' in meteorology and oceanography, and what
purpose does it serve?". The following discussion offers some remarks which are
intended to 'set the scene' for future presentations, by elucidating the general
role of laboratory experiments in fluid mechanics and atmospheric science, and
that of the thermally-driven rotating annulus as a particular example of

relevance to general circulation studies in meteorology.

1. "Models' in basic and applied science

In engineering and applied sciences, the term 'model' is commonly used to
represent a device which imitates the behaviour of a physical system as closely
as possible, but on a different (usually smaller) scale. The aim of such a model
is normally to evaluate the behaviour of the physical system under practical
conditions, for reasons connected with the exploitation of that system for
economic, social, military or other purposes. Numerical weather prediction (NWP)
models, for example, clearly fall into this category. By their very nature, such
models are extremely complicated entities. Like the atmosphere itself,
therefore, it is generally impossible to comprehend fully the complex
interactions of physical processes and scales of motion that result in their
synoptic behaviour. The success of these models can only really be judged by the
accuracy of their predictions as directly verified against subsequent
atmospheric observations. Climate models, on the other hand, are often
comparable in complexity to those used for NWP, yet are frequently used in
attempts to answer questions of economic, social or military importance for
which little atmospheric data may be available to verify their conclusions (e.g.

the 002 problem, the 'nuclear winter' debate etc...).

In constructing such models and interpreting their results, it is necessary
to make use of a different class of model - the 'conceptual' or 'theoretical'

model - which may represent only a tiny subset of the processes active in the
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much larger, applications-oriented model, but whose behaviour may be completely
understood (both qualitatively and quantitatively) from first principles. To
arrive at such a complete level of understanding, however, it is usually

necessary to make such models extremely simple in construction and highly

idealised. An important prototype of such a model in fluid mechanics is that of
dimensional or 'scale' analysis (a hybrid form of the technique was called
'inspectional analysis' by Birkhoff 1960), in which an entire problem is reduced
to a determination of the essential balance of forces, and the consequent
dependence of one or more observable (dimensionless) parameter on others in the
form of power-law exponents. Following a systematic scale analysis, it is often
possible to arrive at a scheme of approximations to the full mathematical
description of a problem (e.g. the Navier-Stokes equations) which may then
permit analytical solutions to be obtained. The quasi-geostrophic approximation
is another important prototype, discussed in detail in this course (and
elsewhere, see e.g. Gill 1982), which enables a number of essential dynamical
processes (barotropic and baroclinic instabilities, Rossby waves, 'free modes'

etc....) to be studied in simplified forms.

For the basic researcher, such models are an essential device to aid and
advance understanding. The latter is achievable because simple models enable
theories and hypotheses to be formulated in a way which may be tested (i.e.
falsified, in the best traditions of the scientific method) against observations
(e.g. of the atmosphere of the Earth and of other planets) and/or experiments.
The ultimate aim of such studies in atmospheric science are an overall
framework which sets in perspective all planetary atmospheres, of which the
Earth's is but one example (see Lorenz 1967; Hide 1969, 1977; Hoskins 1983;

Fig. 1)

The role of laboratory fluid mechanics experiments in this scheme would seem
to be as models firmly in the second category. Compared with the atmosphere,
they are clearly much simpler in their geometry, boundary conditions and forcing
processes (diabatic and mechanical). Their behaviour is therefore governed by a
system of equations which can be stated exactly (i.e. no controversial
parametrisations are necessary), although exact mathematical solutions may still
be impossible to obtain. Unlike the atmosphere, however, it is possible to carry

out controlled experiments in the laboratory to study dynamical processes in a
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real fluid without recourse to dubious approximations (necessary to analytical

studies). For certain purposes, therefore, laboratory experiments can complement
studies using complex numerical models, especially since (a) experiments have
virtually infinite resolution compared with their numerical counterparts
(subject only to the continuum hypothesis!) and (b) they are very cheap to run!
In the context of simple analytical models of atmospheric processes, it is
sometimes possible (though by no means automatically true) that a suitably-
designed laboratory experiment can be used to obtain a physical realisation of
that model in a real fluid, provided certain scaling assumptions (for 'dynamical
similarity') can be satisfied (e.g. Birkhoff 1960). Such an experiment can be

regarded as a 'test bed' for that model under highly controlled conditions.

In discussing the role of laboratory experiments, however, it is not
entirely true to say that they have no direct role in the construction of more
complex, applications-oriented models. Because the numerical techniques used
(finite-difference schemes, etc.) in such models of the atmosphere can also be
used to simulate flows in the laboratory under similar scaling assumptions,
laboratory experiments can also be useful 'test beds' for directly verifying
the accuracy of such techniques in a far more rigorous way than is possible
using atmospheric data alone (indeed this role is explicitly recognised, for

example, in the World Climate Programme, and will be discussed in Lecture 7).

2. General circulation studies and the rotating annulus

If the central problem concerning the global circulation of the Earth's
atmosphere is that of 'predicting from the laws of classical physics that the
atmosphere is necessarily organized as it is', then any approach towards
obtaining such a prediction should include a minimal number of essential
physical ingredients. At its most basic level, the general circulation is but
one example of thermal convection due to impressed differential heating in the
horizontal in a fluid of low viscosity and thermal conductivity. Laboratory
experiments investigating such a problem should therefore include at least these
features, and be capable of satisfying scaling requirements for dynamical
similarity to the relevant scales of motion in the atmosphere. Such experimental
systems may then be regarded as representing the general circulation in the

absence of various complexities associated e.g. with radiative transfer,
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atmospheric chemistry, boundary layer turbulence, planetary curvature,
topography etc. (although the latter can be included in a systematic way if

required, see Lecture 5).

Experiments of this type are by no means a recent phenomenon, with examples

published as long ago as the 18th and 19th centuries (e.g. Vettin 1884; Exner

1923; see Fultz 1951 for a review of this early work). The modern development of

experiments on the general topic of rotating fluids was begun by Taylor (1923),
who also contributed greatly to the theoretical development of the subject. It
was not until the late 1940s, however, that Fultz began a systematic series of
experiments at the University of Chicago on rotating fluids subject to
horizontal differential heating in an open cylinder (hence resulting in the
obsolete term 'dishpan experiment'), and set the subject onto a firm footing
(see Fultz et al. 1959). Independently and around the same time, Hide (1958)
began his first series of experiments at the University of Cambridge on flows
in a differentially heated rotating annulus, and it is the latter system which

we now consider in detail,

3. Flow regimes and transitions in the rotating annulus

The typical construction of the annulus is illustrated schematically in Fig.
2, and consists of a working fluid (usually a viscous liquid, such as water or
silicone 0il) contained in the annular gap between two coaxial, circular,
thermally-conducting cylinders, which can be rotated about their common
(vertical) axis. The cylindrical sidewalls are maintained at constant but
different temperatures (though see Lecture 6), with a (usually horizontal)
thermally-insulating lower boundary and an upper boundary which is also
thermally-insulating and either rigid or free (i.e. without a lid).

Although a number of variations of these boundary conditions have been
investigated experimentally, all such experiments are found to exhibit the same
three main flow regimes over the range of conditions studied. These consist of
axisymmetric flow (in some respects analogous to Hadley flow in the Earth's
tropics) at very low rotation rate (), regular waves at moderate ), and highly
irregular aperiodic flow at the highest rotation rates attainable. In addition,
axisymmetric flows occur at all values of @ at a sufficiently low temperature

difference AT. The location of these regimes are usually plotted on a 'regime
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diagram' with respect to the two most important dimensionless parameters, viz.
a stability parameter (or 'thermal Rossby number') @ (= goaTd/[Q(b - a)]?2,

where g is the acceleration due to gravity, and o the cubical expansion
coefficient of the fluid) and a Taylor number Ta (= Q2%(b - a)5/[v3d], where

V is the kinematic viscosity - see Fig. 3).

The regular waves may be either steady (apart from a slow drift) or
'vacillating' (i.e. with a periodic or nearly periodic time dependence).
'Amplitude vacillation' occurs in association with transitions towards a lower
wavenumber (obtained by reducing  and/or increasing AT), and is characterised
by periodic modulation of the wave amplitude and phase speed. 'Structural
vacillation' (also known as 'shape' or 'tilted-trough vacillation') occurs as
the irregular flow transition is approached, and is characterised by a nearly
periodic tilting of the wave axis. This becomes more pronounced as 9 is
increased, until the regular flow pattern breaks down into fully irregular flow.
Another important property characteristic of the regular flow regime is that of

intransitivity (i.e. multiple equilibrium states), in which two or more

alternative flows with differing azimuthal wavenumber m can occur for a given
set of parameters. The state obtained depends upon the initial conditions. In
addition, transitions between different states in the regular regime, achieved
by slowly changing the external parameters, often exhibit hysteresis, in that
the location of a transition in parameter space depends upon the direction from
which that transition is approached (e.g. m = 3->4 does not occur at the same
point as m = 4->3). The latter properties are intimately connected with non-
linear effects in the flow (e.g. see Pippard 1985) arising from the advection of

heat and momentum in the fluid.

From a consideration of the conditions under which waves occur in the annulus
(especially the location in parameter space of the 'upper symmetric' transition,
see Fig. 3) and a comparison with the results of linear instability theory (e.g.
see Lecture 3), it is concluded that the waves in the annulus are fully-
developed manifestations of baroclinic instability (often referred to as
'sloping convection' from the geometry of typical fluid trajectories, e.g. see
Lecture 3 and Hide & Mason 1975). Since these flows occur in the interior of
the annulus (i.e. outside ageostrophic boundary layers) under conditions

appropriate to quasi-geostrophic scaling, a dynamical similarity to the large-

SR



scale mid-latitude cyclones in the Earth's atmosphere is readily apparent,
though with rather different boundary conditions. A more detailed discussion of
the properties of these flows is given by Hide (1969, 1977) and Hide & Mason
(1975). Implicit in this conclusion is the implication that the waves develop
in order to assist in the transfer of heat both upwards (enhancing the static
stability) and horizontally down the impressed thermal gradient. The effect of
baroclinic waves on heat transfer (including laboratory measurements) will be

discussed in more detail in Lectures 6 and 7.

4. Other experimental systems?

The regime structure for the thermal annulus is remarkable in exhibiting
highly regular and predictable non-axisymmetric flows over a wide range of
parameters. If such a regime structure were to apply generally to any fluid
system, it could have important implications for theories of atmospheric
predictability. Evidence for regular flow regimes in systems more closely akin
to planetary atmospheres is currently sparse (e.g. see James & Gray 1983),
although the atmospheres of Mars and Jupiter display some intriguing examples
of highly persistent and regular features (e.g. see Leovy 1979; Lecture 6). It
is of interest, therefore, to compare the regime structure of the thermally-
driven annulus with that of other fluid systems in the laboratory which

investigate quite different dynamical processes.

a) The two-layer annulus or cylinder

Another system which exhibits baroclinic instability in a different form to
that of the thermal annulus is found in the rotating, two-layer experiment (e.g.
see Hart 1979). Two immiscible liquids of differing density (4P) are placed in
an open circular cylinder or coaxial annulus (see Fig. 4(a)) which can, like
the thermal annulus, be rotated about its vertical axis of symmetry. Motions
are driven by rotating the rigid upper boundary of the fluid at a different rate
to the rest of the apparatus, imparting a vertical shear which causes an
axisymmetric deformation of the fluid interface (thereby storing potential
energy in a way analogous to the sloping isotherms in the thermal annulus).
Baroclinic instability occurs via non-axisymmetric deformations of that

interface, thereby transferring angular momentum (rather than heat). A
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significant advantage of this system in the study of sloping convection is that

it is more amenable to mathematical analysis than the thermally-driven system
(e.g. see Pedlosky 1979).

The regime diagram is schematically shown in Fig. 4(b), plotted vs an inverse
Rossby number R (= AQ/[29Db - a)], where AQ is the difference in rotation rate
between the appgratus and the 1id) and a Froude number F (= p [2Q(b - a)]?/[gapD])
~ 1/0, see 83 above). At low F and/or very small R , all flowg are axisymmetric,
while at F > 5 with moderate R , waves are found tg occur, As in the thermal
annulus, these waves are regulgr and steady at moderate values of F, and undergo
periodic modulations at larger values. At the highest values of F attainable,
the flow becomes irregular and aperiodic, much as observed for the thermal

annulus.

b) Rayleigh-Benard convection

The properties of thermal convection without rotation in the presence of an
unstable thermal gradient in the vertical have been studied for many years (e.g.
see Swinney & Gollub 1985 for a review). The regime structure is found to
depend significantly upon the aspect ratio D/L (where D and L are vertical and
horizontal length scales respectively). Fig. 5 shows a typical regime diagram
for low aspect ratio systems (from Krishnamurti 1973), in which flow type
depends mainly upon the Rayleigh number A (= gaATD®/kv, where Kk is the thermal
diffusivity of the fluid) and the Prandtl number P (Z v/k). No convection
occurs at all when A < A (~ 1500). When A > A , convection begins in the form
of steady, 2-dimensionalcrolls, the precise fogm and orientation of which
depending upon the lateral boundaries. As A continues to increase, the rolls
give way first (at high P) to steady, 3-dimensional cells, then to time-
dependent flows, which can be regular and periodic (especially at low P) before
finally becoming irregular and turbulent. For large aspect ratio systems, there
is little evidence for regular behaviour at the onset of convection, with the
flow rapidly becoming irregular and turbulent (with the development of plumes

etc.).



c) Taylor-Couette flow

The instability of a homogeneous fluid subject to mechanical shear at its
boundaries is another classical problem in fluid mechanics, and was extensively
studied (both theoretically and experimentally) by Taylor (1923). To study the
flow in the laboratory, the fluid is usually contained in an annulus of narrow
gap width (b - a) and large depth, in which the inner and outer cylindrical
sidewalls may be rotated independently (at Qa and Qb - see Fig. 6(a)). The
flow obtained depends principally upon Reynolds or Taylor numbers defined by
Qa, Qb, a and b (i.e. Rea = Qaaz/v etc.) and the main aspect ratios
of the apparatus. Because the experimental arrangement is simple and easy to
control (and has applications connected with the lubrication of bearings), it
has received wide attention, especially in recent years, in connection with its

transitions to turbulent flow (e.g. see Swinney & Gollub 1985 for a review).

At low values of R , the flow is uniform throughout the apparatus, in
response to the imposgd shear. Above a critical value of R (related to the
Rayleigh criterion for inviscid centrifugal instability), ghe flow develops a
series of steady axisymmetric rolls which are periodic along the rotation axis
(Taylor vortices). As R is increased further, the rolls develop waves in the
azimuthal direction ('wgvy vortex flow'), and the flow becomes doubly-periodic
(see Fig. 6(b), taken from Coles 1965). At much higher values of R , further
instabilities occur until fully turbulent flow is obtained, although the
detailed sequence of events is highly complicated (the sequence is discussed in
some detail by Andereck et al. 1986). Intransitivity in the number of Taylor
vortices obtained at a given set of parameters in the regular flow regime is
often exhibited much more strongly in the Taylor-Couette system than in the
thermal annulus, in the sense that many more different states may be obtained

at a given set of parameters.,

5. 'Universal' behaviour and Dynamical Systems

The above examples serve to demonstrate (and the list is by no means
exhaustive) that the presence of steady symmetric, regular periodic, and
irregular flow regimes are the norm rather than the exception in fluid mechanics
(at least for systems characterised by a degree of spatial symmetry in their

boundary conditions). Some justification for this conclusion has recently
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emerged from studies of the general theory of non-linear dynamical systems, of

which fluid flows may be but a single example.

A dynamical system may be loosely defined as one whose state is fully
determined by its position in a suitably-defined phase-space, and whose
evolution in time (i.e. its time derivatives) depends solely upon its current
position in phase-space. Numerous other examples of dynamical systems are found
outside hydrodynamics, including non-linear optics, electronics, engineering
structures, chemical reactions, and even certain processes in living organisms
(e.g. see Cvitanovic 1984; Pippard 1985 for reviews). Of particular interest
has been the identification of a number of sequences by which systems may
undergo transitions ('bifurcations') from steady to irregular behaviour via
regular, periodic states, and in which irregular behaviour may involve only a
relatively small number of the available degrees of freedom in a way first
identified by Lorenz (1963 - 'deterministic chaos' !!!). The latter is in
complete contrast to earlier classical theories of the transition to turbulence
(Landau & Lifshitz 1959), in which turbulence and irregular flow was associated

with the excitation of a very large number of degrees of freedom.

The possible applications of these theoretical developments to real systems

continues to be an active area of research activity....(e.g. see Bell et al.
1986).
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Schematic diagram of a rotating fluid annulus subject to a horizontal temperature
gradient, drawn for the case when the upper and lower bounding surfaces
are horizontal. P is a general point with polar coordinates (r, ¢,2) in a
frame of reference rotating with the apparatus: Q=(0,0, Q) is the angular
velocity of basic rotation; g=(0,0, —g) is the acceleration of gravity :
region occupied by the fluid is a<r<b, © <2< d: T, and T, denote
the respective temperatures of the cvlindrical boundaries. r=a and r=>b.
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Lecture 3 : Linear instability theory

The quasi-geostrophic (QG) model

The QG model was introduced in lecture 1 and will be extensively
used in this lecture and the next one. Detailed accounts are given in
the text-books by Pedlosky (1979) and Gill (1982). Here we give only a
brief outline - assuming an incompressible fluid model, ﬁ- plane

dynamics and inviscid adiabatic motion (and using height coordinates).

The central quantity is the streamfunction 4/of the geostrophic
wind: ‘Y’ = .P: EXVPl = kx Vq-‘ -so P = ?’/Ja.ﬁ.(Here, and
from now on, is the horizontal gradient operator (3/31, 3/33) 2y
Primes indicate deviations from haizontal averages; e.g., ‘P’= P -— ﬁxl)

The equation governing the time evolution of \P is

(-?QE + V. V)(P — (@) (1)

Y2
(assuming adiabatic, inviscid flow). Here N = —_Jg.%)is the buoyancy
(]

frequency and the quantity
5 2
g CRLiLnT el

is known as the quasi-geostrophic potential vorticity. Horizontal

boundary conditions are specified via the thermodynamic equation, whose

appropriate adiabatic form (see text-books) is

) 2 N o
(ruv)g + X 9 ®

Thus, if there are rigid horizontal boundaries at sz’_"[z (say) we have

simply

(% + onv)-%g- = 0 at z = +H) (4)

Given suitable side boundary conditions (such as LP: Oony=0,L and
cyclic continuity in x) and initial conditions, the time evolution of q)



is thus fully determined. All other quantities are deducible from (‘):

vy = kxW & p=pfP® ,P'=.Ea3f».?.a'_~£ %

TN TRE TR R TR

ow = 0 (9)
T X =

Here X is the velocity potential of the irrotational ageostrophic wind

V‘( Y- V VX) . (Strictly Va has a small rotational part - but
it 48 dynamlcally unimportant.)

o

Stability of zonal flows

The QG model is a convenient one for studying the stability of
steady zonal flows to large-scale perturbations. Suppose that the zonal
flow is U= U(H,!) . Perturbations LP about this state must obey the

linearized form of (1) (and associated boundary conditions) :

_) ‘%_?: = ®) (10)

3:).: 33
== |
, 2 = )3”3 ol a!k =
subject to ( + U 3% 32 D (@) (11)

at rigid horizontal boundaries, and

LP'=O st y=0,L

\P(EA'L:) . W(") (12)
In (10) |
p'= T+ SR
and a- % 27 i 3 (13)
L = ﬁ" _a__ f N a;

-

(the "potential vorticity gradlent").

The general stability problem (which encompasses barotropic, baroclinic

and mixed cases) is complicated. However, conditions for stability may be

'-----_------
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T

derived (Blumen (1968, 1978), White (1982)) :

o (@-0.)/ %%, O evenguhese
and Cu"’ u°>/ aa/az é O on £ = "'“/2 (14)
(u— uo)/aa/az 2 0O on &< Hf2

for some choice of the constant (lo , then the flow is stable to all

IN

perturbations. (Equivalent conditions for wave-mode perturbations are
given by Pedlosky (1964)). Note that a zonal flow may possess
horizontal temperature gradients (and hence "available potential
energy") and yet be stable. However,many flows which are of interest
are unstable; temperature gradients at the horizontal boundaries are

instrumental in allowing instability in many cases.

The Eady Problem (Eady (1949))
Consider the simple case in which (i) U= Al Z/H (1) }3 =0

(iii) N = constant. The stability problem is now analytically

tractable. Wave-modes having

\.P' = ‘Qn.i F(Z) siuln eik(m—d)’}

(‘;1‘9;) - (B - kDY B-cthd)

Here P & _&H. 0(2* L’ )'/z
o

obey

is a non-dimensional horizontal wavenumber. For p é 2.4 unstable waves

exist - see diagram.

o
w

©
N

o
-

(o}

The flow U =42 has sloping isotherms (and hence sloping isopycnals).
Potential energy is released if fluid elements are interchanged at an

anglexto the horizontal which is less than the slope & of the mean

o




isotherms. It is readily shown that the energy release is a maximum if
X = %_8 (Green 1960). Away from the horizontal boundaries this is

achieved in the fastest-growing waves.

Energy arguments provide a useful rationalization of the
instability which is found in the Eady problem. But vorticity

constraints are at least as important - as the stability conditions (14)

show.

Some extensions of the Eady problem can be done analytically.

Examples are :

(i) Lower and/or upper boundaries remain axisymmetric but slope

meridionally. Opposite boundary slopes can simulate (crudely) a

positive or negative p-— effect - in that meridional motion is
accompanied by vortex stretching or compression (at least as regards
the height-average flow). Similar boundary slopes can drastically
affect the energy releasing mechanism by dictating trajectory slopes
throughout the fluid.

(ii) Ekman layers are present on the upper and/or lower boundaries,

In such cases Z= 3% “Iz a.ze imagined to be the extremities of the Ekman
2
layers, and W = ;(};.\% \' LP ( ¥P=kinematic viscosity) are applied there.

(iii) Combination °of (i) and (dii).
See Hide and Mason (1975) and Mason (1975) for details.

If P#O the stability problem becomes analytically demanding, but it is
understood as a result of the studies by Charney (1947), Green (1960), Garcia
and Norscini (1970) and others. Use of a 2-layer or 2-level model makes the
problem much simpler (at the expense of assuming a very coarse vertical
resolution); see any reputable textbook on dynamical meteorology. Except in
a few limiting cases - which are_gonceptually important - the presence of
lateral shear in the basic flow U makes numerical methods of soluton
essential, See Held and Andrews (1983) for references. '

Interpretation of results

Zonal flow stability analyses based on QG dynamics leave little doubt that
baroclinic instability is an important process in the Earth's atmosphere.
Stability analyses based on the SG model (see Hoskins 1976) and on the

A
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hydrostatic primitive equations (see Simmons and Hoskins 1976) support this
conclusion - as do numerical integrations into the nonlinear regime (Simmons
and Hoskins 1978). However, it must be borne in mind that all these analyses
are initial value calculations in which a fairly simple zonal flow is posed

and then found to be unstable. One may reasonably ask how such a flow might
occur in reality - given that instabilities may be expected to break out as
they become dynamically viable, and not to be restrained until the theoretician,
in god-like mood, chooses to shout 't=0'. Until recently, theory has paid
little attention to stable (or weakly unstable flows) as models of the zonal
mean atmosphere. However, there is growing evidence that the atmosphere, in its
day-to-day evolution and on the large scale, is often only marginally unstable
(see Stone (1978) and Held (1978)). Steady waves in the annulus offer further
evidence of this possibility. Another important element has been the
recognition of steady, finite-amplitude solutions of the QG equations - the

subject of the next lecture.
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Lecture 4 : Free Modes

Linear instability theory offers an explanation for the occurrence
of non-axisymmetric motion in the atmosphere, but it has also promoted
the notion that the atmosphere is a turbulent fluid (on large
horizontal scales). In turbulence, energy and other quantities are
passed between different scales of motion by the advection process
(which is of course mathematically nonlinear in an Eulerian
description). Such processes are undoubtedly important in the
atmosphere, yet other possibilities exist : even large amplitude
disturbances may not involve cascades of energy. In this lecture we

consider analytical models of such free modes.

Steady solutions of the QG system

The QG potential vorticity equation may be written in the form

% & T(‘PA’) = O (1)

in which I(‘W,Q> = -aa_\zk'.%g e —aal’g g

(the Jacobian of L‘/and Q w.r.t. x and y). Note that (1) is the full

nonlinear QG form.

Suppose that a i c-a.
ot ox

where c is a real constant. Then (1) can be written as

:I'(x\uc&,Q) § 0 (2)

which has solutions of the form

Q = F(‘t(/-e c:O (3)

where F is any well-behaved function. According to (3), contours of

Q must be parallel to contours of QJ-tcd ; or, in other words, a
coordinate frame must exist in which the Q and q) contours are
parallel. Most attention has been paid to cases in which F is a linear

function.

—



1. Domain-filling solutions
If FX) = - ol X , then (3) becomes

Vg - i - n’-az‘ =t e W

Separating the zonal mean (- ) and deviation ( /) parts we find

2 {
Q' = - O(.‘
V , ';% 232 ¢ )
Lau. .f: - ﬁ & slnnr® o (5%
33" N?* aZ (6)

Solutions exist in the following forms:

(i) Dbarotropic Rossby waves

U= T LP = Asmkx Sml:‘ cim 0 = %‘)‘t(’l>

(ii) baroclinic Rossby waves

a’ =u° : 4) S Asmk /smlﬂsmml cC = (1° - g/(lc‘-tl.’+_f;;_:m!>

(iii) any combination of barotropic and baroclinic Rossby waves and

sinusoidal zonal flows having the same total wavenumber:

Y s sin
u= u, + ZUN m?’jcos

Sin, /Sin, Sin
zAu cos ¥ cos!Yq cos™2

cC = U, e F/“z

b | T2 2 ? 2
where ? s io = k¥(l+ m |‘g = o
N? N
for all components included in the sums. [x'= (x-ect Y]

The possibilities in (iii) may be restricted by the boundary conditions,
but fairly complicated solutions are obtainable in many cases of
interest. See Kuo (1959). Read (1985) and White (1986) have used

solutions of this type to model regular waves in the laboratory annulus

and to illustrate certain aspects of wave-mean flow non-interaction.
Mitchell and Derome (1983) have examined their relevance to the blocking

phenomenon in the atmosphere.




2., Isolated solutions

Finite amplitude solutions of the form (3) which are spatially
isolated can also be found. It is required that F take on different
forms in an interior and exterior region (with matching conditions
applied at the boundary). The diagram shows the streamfunction in a
solution of this type which has become known as a 'modon'. Most have

/-

been obtained in barotropic or

\ 2-level models. See Stern (1975),

Flierl et al (1980) and
Tribbia (1985). The character of

\\\\\ES\\\\§-~_-__"’//;7”’,’— modons is that the solution is

TN ””—" spatially oscillatory in the interior

domain and spatially decaying in the exterior. The conditions applied
at the boundary are continuity of streamfunction (¥ pressure),
tangential velocity and vorticity. The resemblance of modons to the
dipole structures seen in blocking pressure fields has prompted much
interest.

Modons are not solitons in the true sense (they do not emerge
unscathed from collisions). Solitons may be obtained as solutions of
the QG model in certain asymptotic limits. See Malanotte-Rizzoli (1982)

for a review.

Approach to free mode form in real geophysical flows

The existence of many finite amplitude solutions of the QG model
suggests that steady flow structures might be important in the real
atmosphere. Of course, the finite amplitude solutions might be unstable
(and in some cases this has been proved) but numerical integrations with
the QG equations suggest effective stability in many cases. To
investigate approach to free mode form in real fluids we need to
evaluate Q and q) at each data or grid point and plot them against one
another., If Q’.-‘.Q(q») then the points should collapse on to a line (or
curve); in general terms, the spread of points about some mean curve is
a measure of departure from free-mode form. For QG numerical models
this is an easy enough procedure, but to process real data in the
required way is more difficult because of the approximations inherent in
the QG model. D.G. Andrews has shown that this difficulty may be




overcome by noting that free mode behaviour may occur in flow governed
by the hydrostatic primitive equations. We revert to the forms used in
lecture 1 for a perfect gas. In adiabatic, inviscid flow

_g_{: + C!.Ve)‘! 4 'f!sx'y_ -+ VeH = O (7)

2L) - ()

Y
%g = .-%p = Cr (—%) 2 9)

are the O-coordinate forms of the horizontal momentum, continuity and

(@) (8)

hydrostatic equations. M (the Montgomery potential) = az«r C'To
The (Ertel) potential vorticity in this system is

Py (‘f* Za % 329:@-%ﬂe(10)

which is a very simple form (see Hoskins et al (1985).

(B + 4% )%

represents conservation of q,g An advantage of @-coordinates is that
there is no vertical motion (

Hence

o

(11)

=0) unless diabatic heating is present.
This makes it easy to isolate effects which result from the adiabatic
dynamics and effects which do not. Suppose that a free-mode state

exists, and that we adopt a coordinate frame in which ot= 0. Then (8)
becomes

vE) - © az
and so xaP/ae = !S_X.VQX)

where X is a streamfunction for _!3%3 on isentropic surfaces.
From (11)

%g(x.ve)ﬁ =0 3 :r(x,%) =0 » e = F(x,e)

Also, from (7)

%%@ Vo)i%gz-r qz + c,T} =0 3> é—g‘-eaz-c-cﬂ' = G(x,6)

ol



These results can be used to set up an analytical free-mode problem,
but it turns out to be intractable (in general). However, the results
suggest a method of data analysis by which the approach to free mode
form may be assessed - we simply plot QE (or EY) against X.

Almost free modes

In practice, of course, no real geophysical flow is inviscid and
adiabatic. The theory must be extended to include (at least) weak

forcing. For the QG case this is straightforward. Suppose that

Q = @ (W) + Qg
vhere  [@,| @ Qo>
and that the steady state potential vorticity equation is

CYj-V)‘? Frohp ¥ V‘(DVQ)

where FQ represents some forcing agency and D is a diffusion

coefficient., By integrating over a closed q) contour, it is readily

shown that
de, _ - ﬂdexd:'
ok $oy,.d

Thus the forcing and the diffusion
\P:o-vxtux constrain the relation between Qo and 4).
The treatment has been extended to
forced cases - with the bonus that some of the uncertainty about the
Q(W) relation is removed. See Rhines and Young (1982), Pierrehumbert
and Malguzzi (1984), Marshall and Nurser (1986), Read et al (1986).
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DYNAMICS OF ROTATING FLUIDS September 1986
_LECTURE &5
2.1 Introduction

It is widely recognized that the underlying topography of the earth's
atmosphere influences it over a large range of length scales; from the smallest
scales where topography can produce local winds in the boundary layer, to lee
(gravity) waves downstream from the topography, to mesoscale phenomena such as
lee cyclogenesis, right up to stationary planetary scale waves which are regularly
observed in climatological mean fields. One approach to gain insight into the
nature of these phenomena is to use laboratory experiments to systematically study,
in a controlled manner, the effect of topography over a large range of parameter
space. The laboratory studies divide naturally into three sections:
a) non-rotating stratified flow,
b) rotating homogeneous flow and
c) rotating stratified flow.

2.2 Nop-rotating stratified flow

1) Layered flows.

The non-rotating experiments carried out, model atmospheric phenomena with
short length and time scales where the earth's rotation is not important for the
dynamics. They are considered relevant if viscous effects are small i.e. the
Reynolds number Re>100. The Reynolds number is defined as

Ra = Ul = _Inertia force

¥ Viscous force

where U = characteristic velocity
1 = characteristic length scale
¥ = kinematic viscosity

The experiments are generally performed by towing a smooth obstacle along
the bottom of a long, horizontal tank and the fluid is stratified by using
individual layers of constant density separated by abrupt changes in density.
Single layer flows have been studied extensively (Long 1954,1970,1972), mainly with
regard to engineering hydraulics. These experiments are applicable to atmospheric
flows when the hydrost&tic approximation is satisfied. .This requires that the depth
of the layer is small compared to the horizontal length scales. Two non-

dimensional parameters characterize the resulting flow:

Froude number Fo = _U__ = Inertia force
(gd)* Gravity force
and H = _h
d




|

where g = acceleration due to gravity
h = height of obstacle
d = undisturbed deb}th of layer
The general properties of single layer hydrostatic flow over an obstacle
appear to be understood, with theoretical models (Houghton and Kasahara 1968)

being consistent with the observations. Figure 5.1 summarizes the flow regimes

obtained. To the left of the curve FAB the flow is either supercritical ®Fo>1) or
subcritical (Fo<1) and the flow over the obstacle is given by the Bernoulli
equation (Tritton 1977). Between EAB and BC a hydraulic jump propogates upstream
and in this regior below AD a hydraulic jump is attached to the lee of the
obstacle (above AD this is only a transient feature). To the right of the curve BC
the obstacle height is sufficient to completely block the flow.

Experiments with two-layer flows, where the density jump at the upper
interface (air/water) is much greater than at the lower one, have been carried out
by Long (1974) and Smith (1976). Similar phenomena are observed in the lower layer
for appropriate parameter values as in the single layer experiments. In addition
though a hydraulic drop is at seen at the lower interface either when the obstacle
height is greater than the initial depth of the lower layer, or when the lower
layer is deeper than the upper one.
i1) Continuously stratified flows.

In a stably stratified fluid the tendency for a vertically displaced fluid
particle to return to its original level means that waves can be generated. The lee
wave phenomena which is schematically shown in figure 5.2 is one example of this.
The important non-dimensional parameters are

§=z = —;#g where N is the Brunt-Vaisala frequency (the frequency
podz a vertically displaced particle oscillates about its
original position in a stably stratified fluid)

K=15 €e=Th F=_1 i.e eKF = 1
mu d Fh

The first experiments with continously stratified flows over obstacles were carried
out by Long (1955) using a smooth flat obstacle of circular-arc shape. He observed
the lee waves found in the parameter range 0.7<K<4.6, 0.17<e<0.63 and the results
compared favourably with theory. However as the value of K was increased,
alternating horizontal jets became apparent in the vertical just upstream from the
obstacle which do not appear in the theoretical solutions. These Jets were related
to some degree of blocking below the level of the top of the obstacle.

2.3 Rotating homogeneous flow.

In rotating systems the coriolis force is of paramount importance and the
most appropriate non-dimensional parameters for describing the flow are the Rossby
number and Ekman number defined as:
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Rossby number Ro = __U_ = ipertia force
2QL

coriolis force

Ekman number E = __Y = yiscous force
20= coriolis force
where Q = rotation rate (N.B. Re = Ro/E )

In a rapidly rotating system, an obstacle may influence the flow
throughout the full depth of the fluid to a much greater extent than in a non-
rotating system. This is 1illustrated by the Taylor-Proudman theorem which states
that as R-90 and E40 a steady homogeneous flow satisfies

QWu=0
(N.B. This is obtained by taking the curl of the geostrophic equation of motion and
using the continuity equation.)

Thus, for convenience, if Q is in the z direction

Q34 = 0 or du=90dv =9y =0
2z 3z 3z dz

which states that none of the components of the fluid velocity vary in the
direction of the rotation vector. This implies that in a system with a solid
boundary perpendicular to the rotation axis i.e. w = 0 on the boundary, then

Qu = dy = 0, w = 0 everywhere
8z oz

Therefore the flow is entirely two dimensional in planes perpendicular to
the axis of rotation. This bas striking consequences when an obstacle is placed in
the flow. The fluid is deflected past the obstacle and as the flow must be two-
dimensional, this deflection also occurs above and below it, leaving a stagnant
column of fluid, known as a transverse '‘Taylor column', parallel to the rotation
axis.

The pioneering experiments of G.I.Taylor (1923) verified the existence of
these columns which showed that dye deposited in the region above a sphere placed
in a rotating flow remained almost stationary and was ﬁot swept away by the flow
in which the sphere sat. The interior region of the ‘'Taylor column' has been the
subject of many experimental (a typical experimental set up is shown in figure 5.3)
and theoretical studies since then (Long 1952, Ibbetson 1964, Hide and Ibbetson
1966, Hide et al 1968, Davies 1972, Maxworthy 1977, Vaziri and Boyer 1977, Mason
and Sykes 1979). It is found in practice that because of viscous and ageostrophic
effects the ‘'Taylor column' can have a complex 3 dimensional structure and the
exchange of fluid between the interior and exterior takes place via shear layers.
For an isolated obstacle the streamlines in the interior can be interpreted in
terms of potential vorticity arguments (Hide 1961, Greenspan 1968) and for
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inviscid steady motion the obstacle height must exceed a critical value in order

that stagnant fluid appears above the topographic feature i.e.

\

=2 B 7 |
dRo

The above description of a 'Taylor column' flow is strictly valid only in
the double limit (R.,E)40 and so caution must be exercised when applying these
ideas to real fluids. As inertial effects become important (i.e. as Ro increases) it
is observed that the 'Taylor columns' slope at an angle y relative to the rotation
axis (see figure 5.4), where y is given by

Tan y = CRo where C = a constant

In a strict sense the Taylor-Proudman theorem is violated either when
du/dz (or dv/dz) # 0 which would cause twisting or tilting of vortex lines
(compare with %ﬁ%\é —%/%;. term in the vorticity equation, see lecture 1) or when

ow/dz # 0 which would cause stretching of vortex lines ((T+£)dw/dz term in the
vorticity equation, where ¥ = relative vorticity and £ = 2Q). The latter would occur
if an inviscid, homogeneous fluid was forced to flow over a two dimensional
obstacle (as shown in figure 5.5) where there can be no flow around it. The
deflection of a streamline passing over the ridge can be calculated from the
potential vorticity equation (Z'%_E = constant). As the column of fluid rises over
the topography it is compressed and the relative vorticity decreases Qw/dz < 0.,
On moving over the obstacle the column is restored to its original length thus
returning to its original relative vorticity (Holton 1972).

2.4 Rotating stratified flow.

Vhen both rotation and stratification are present their relative
importance is indicated by the parameter

S=_X_ or the Burger number B = _N2d=
2Q f2L2

Vhen S is small, one is dealing essentially with a rotating flow modified by
stratification and 'Taylor columns' would be expected to be observed. Davis (1972),
using an apparatus in which a sphere is towed slowly through a rotating container
filled with a salt stratified fluid, found that the vertical penetration of the
‘Taylor column' produced was strong when 8<0.1 and only very weak when S>0.1. With
relatively large values of S the column does not penetrate far from the barrier and
becomes more of a cone shape than a column. Figure 5.6 shows the length of the
'‘Taylor cone' non-dimensionalized by the radius of the sphere as a function of S
and figure 5.7 shows the variation of the diameter of the 'Taylor cone' with height
for different values of S.

Vhen R{B{1 the possibility of a baroclinic flow being unstable can
complicate the situation. Currently in Met. 0. 21, laboratory experiments in

rotating annuli are being undertaken to investigate the interaction between
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baroclinic flows and bottom topography and the effect of topography on the total
heat transported by the system. The video velocity aquistion system (described in
Appendix A) is being used to get hfprizontal velocity measurements at 5 different
levels in the annulus. This unique, modern technique 1is helping to extend and
clarify previous work carried out by Yeh and Chang 1974, Leach 1975, Jonas 1981
and Guo-Qing et al 1985.

Under conditions for which the flow is axisymmetric in the absence of
topography, the presence of topography produces a stationary, topographically
forced wave, trapped near the base of the annulus, which has a horizontal
wavelength the same as the topography. Figure 5.8 and 5.9 show vector plots of the
velocity field looking down on the annulus near the top and bottom of the annulus
respectively. The topography used in this experiment is a sinusoidal wave 3 in the
azimuthal direction with no radial height variation. Its amplitude is 15% of the
total depth. This flow is representative of the type of flow observed with all the
different pieces of periodic topography used in the present study. It can be seen
that at the level where the wave motion is present the jet streams prefer to cross
the gap in the vicinity of the peaks and the troughs of the obstacle and that the
areas of maximum and minimum relative vorticity are out of phase with the
topography.

Figures 5.10 and 5.11 show cross-sections through the annular gap of the
mean zonal flow and the wave 3 component of a Fourier analysis of the radial
component of the velocity respectively. When these two cross-sections are compared
it is observed that the wave is trapped beneath the level of no mean motion which
may be acting as a critical layer (where mean flow = phase speed of wave (Pedlosky
1979)). Figures 5.12 and 5.13 show a series of experiments that were carried out to
investigate how the vertical penetration of the wave was effected by rotation. In
this case a wave 3 topography was used with a half sine radial variation and a
sloping 1id was incorporated to damp out any instabilities of the baroclinic flow
(Mason 1975). As the rotation rate is increased the drag on the fluid by the
obstacles lowers the level of no mean motion until it cuts the topography near
mid-radius and when N/f<1 the topographically forced wave penetrates throughout
the whole depth of the fluid. It is also noticeable that the amplitude of the wave
approaches zero in the vicinity of the level of no mean motion. ;

To gain some insight into the phase shift of the wave with respect to
the topography (see fig. 5.9) it is necessary to consider the influence of the
Ekman layers that form on the lid and the base of the annulus. To do this a simple
analytical barotropic model is used. Consider the linearized barotropic vorticity
equation on a B plane (a sloping lid approximately simulates a § plane):

3 + T2 Wi+ (B - i‘n) AR 5.1
(bt Bx)vy dy=/ dx dz
o 5 -




where ¢/= the perturbation streamfunction.
Assume a) steady flow i.e. d_= 0
.ot
b) E = Uo = consta;'xt
©) ' = (Wr = we)
3 z d
where wr and we are the vertical velocities at the top and bottom
of the layer due to Ekman suction/pumping.
Thus equation 5.1 becomes:

LAVY MW e sy e 5.2
dx dx d

The vertical velocity associated with the Ekman layers is proportional to the
geostrophic relative vorticity in the interior of the fluid, thus on the 1id

2,,7
L o o S eTV %
On the base the topography will also contribute to the observed vertical velocity

We = eBV.LP,‘P Uokh

..... 5.4
bxx Ve
where es = er = (5:‘;’)
The topography has the form: h(x,y)= hosin(kx)sin G 19 e 55

Looking for a solution of the form !"= [Ssin(kx) + Ccos(kx)lsin(ly) ... 5.6
Substituting 5.35455 and 5.6 into 5.2 and comparing coefficients of

sin(kx)sin(ly) and cos(kx)sin(ly) values for C and S can be obtained. The solution
has the form:

= h*Uo [(Wo - B*)sin(kx) + ecos(kx)lsin(ly)

[ (Uo-F*)2+e?]

where e = _fo (es + er) h* = __foho g oo | W
dk d k=+1=) (k=+1=)

Consider the case when there is no Ekman pumping i.e. e=0

for Uo > 0 ¢’ = _n*uo  sintesinQy)
(Uo—B*)
when Uo < B* (k<ke) +ve relative vorticity over the peaks
Uo > B* (k>ke) -ve relative vorticity over the peaks
Uo = B* (k=kc) resonance state

for Uo < 0 -ve relative vorticity always appears over the peaks
Now consider the case with Ekman pumping i.e. e>0

The inclusion of Ekman dissipation damps out the resonance state

when Uo = B* tve relative vorticity over the peaks
Uo # p* phase shift depends on _ e
: Uo—Rx
- 6 -




Now consider what happens on an_f plane i.e. p*=0
The phase shift of the relative vorticity maxima and minima depends
on e/Uo and the phase shift is largest for longest wavelength
topography. :

This solution suggests that the phase shift can be physically interpreted
as the Ekman layers significantly spinning up or. spinning down the relative
vorticity being generatéd by stretching or compression of columns of fluid as they
move over the topography. Moving up the slope the columns are compressed,
producing -ve relative vorticity. If the horizontal advection is small enough this
is slowly spun up through Ekman pumping so that on the downslope vortex tubes are
stretched to their original length with an extra +ve relative vorticity. The
reverse process then occurs as the fluid moves over the trough. For shorter
wavelength topography and the same horizontal advection the Ekman pumping is less
efficient and so the phase shift is less.

This is a very simple model and is restricted by the fact that it is
barotropic whereas the real system is baroclinic. In practice the phase shift
observed of the topographically forced wave is more complex, with variation in the
vertical as shown in figure 5.14

Experiments carried out on the transition from baroclinically stable (no
drifting waves) to baroclinically unstable (drifting waves) flows indicate that the
effect of topography is to stabilize the transition (see figure 5.15). In
particular, there is a significant effect on the ‘'knee' and the lower symmetric
transition (see lecture 2) which move to higher Taylor numbers. When drifting
waves occur, their wavelength is shorter than the waves in the experiments with
the same parameters but no topography, and the intransitivity and hysteresis
effects generally observed in the annulus are reduced. It is also found that
amplitude vacillation is less widely observed when topography is present. At
moderately high rotation, rates the topographically forced wave dominates
throughout the whole depth of the fluid and this tends to suppress or reduce the
amplitude of the drifting baroclinic waves.
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hydrostatic, single layer flow over an obstacle.

Figure 5.1 A schematic diagram showing the flow regime for




Figure 5.2 A schematic diagram showing a lee wave pattern

set up in a stratified fluid as it passes over
an obstacle.
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Figure 5.3 A schematic diagram showing the experimental
apparatus sometimes used for studying ‘'Taylor
columns'. A source-sink arrangement is used where
fluid enters through the inner cylinder and exits
through the outer. This produces a geostrophic
azimuthal flow in the interior in which a sphere is
held stationary in the rotating frame.
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Figure 5.4 A graph showing the measured inclination of a ‘Taylor

column' as a function of Ro (4) and a theoretical
comparison (-).
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Figure 5.5 A schematic diagram showing an inviscid, homogeneous
fluid being forced to rise over an infinite, two
dimensional ridge on an f plane.
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Figure 5.6 A graph of the non-dimensionalized length of a

'‘Taylor column' as a function of the stratification
parameter N/2Q.
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rotating fluid as a function of §/2Q.
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Figure 5.8 A velocity field near the top of the annulus. On the
base there is a wave 3 topography with no radial
variation and an amplitude 15% of the depth.
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Figure 5.9 A velocity field near the base of the annulus. On the

base there is a wave 3 topography with no radial
variation and an amplitude 15% of the depth.
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Figure 5.10 A cross-section of the annulus gap shdwing the

azimuthal mean flow. The experimental parameters
are the same as for figs 5.8 and 5.9.
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Figure 5.11 A cross-section of the annulus gap showing the wave
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component of velocity. The experimental parameters
are the same as for figs 5.8 and 5.9.
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Figure 5.12 Cross-sections of the annulus gap showing the variation
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Figure 5.13 Cross-sections of the annulus gap showing the vertical
penetration of the topographically forced wave at
different rotation rates. On the base there is a wave

3 topography with radial variation and an amplitude
15% of the depth.
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APPENDIX A
Ihe Video Velocity Aquisition System (V.V.A.SO

An experimental technique for' measuring horizontal velocities in a fluid
has been developed and widely used in the Met. 0. 21 laboratories. In the past,
long time exposure photographs of illuminated tracer particles in the fluid have
been used for this purpose (Douglas et al 1973, Jona_s and Kent 1979, Guo-Qing et
al 1985). The resulting tracks or streaks can be analysed (usually 'by hand which
is a very time consuming process) to get the mean velocity at several points in
the fluid at a given moment in time. The video velocity aquisition system, shown
schematically in figure 1, allows this all to be done automatically in 'real time'
using a digitized T.V. signal.

The density of the working fluid used is dictated by the requirement that
the tracer particles are neutrally buoyant and are thus advected by the fluid
motions. The tracers generally used are spherical polysterene beads with a density
of 1.043 gm/cc and a diameter of 601-710 um. To obtain a working fluid with this
density a water/glycerol solution is used (87% water solution). The fluid is seeded
with a bead concentration of 5x10~“4gm/cc.

The beads are illuminated by a narrow (3mm in the vertical), horizontal
beam of light directed through a perspex window in the outer wall of the annulus.
The motion of the beads that pass through this flat beam of 1light (vertical
velocities outside of the boundary layers are an order of magnitude less than the
horizontal velocities) is viewed from above using a closed circuit television
camera. The signal from the camera is then taken off the rotating turntable via a
slip-ring and is analysed by a video digitizer. It is converted into a two level
(black/white) signal by comparing its intensity against an adjustable threshold
level and the positions of the transitions from black to white (the illuminated
beads viewed by the camera appear as white dots on a black background) in a
512x512 pixel window are analysed using a PDP 11/34 minicomputer. The position of
the centre of each bead in the rotating frame is automatically calculated by
comparing it with two reference points (point light sources mounted on the side of
the annulus) which are digitized at the same time and whose positions are
calibrated beforehand. It is possible to scan the field of view 25 times a second
and in this way the position of the beads can be tracked over a short period of
time. These tracks can be displayed and updated on a television screen in real time
and if necessary be recorded using a video tape recorder allowing a speeded up
record of the flow to be viewed at a later date. This facility, known as STREAK, is
used extensively and has proved very useful for real time flow visualization.

Alternatively the transitions data from several scans can be stored on a
hard disk to be analysed at a later date to extract horizontal velocity
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measurements. This analysis is currently carried out on a VAX 11/730 and involves
four basic steps:
a) the position of the centre of each bead in the rotating frame is
calculated, :
b) the movement (or track) of each bead from one scan to the next
is calculated (strict quality control is used to ensure that the
centres and tracks are unambiguous),
c) the mean radial and azimuthal components of horizontal velocity
for each bead is calculated from the time taken to move the distance
between the start and end of each track <(allowance is made for
tracks ending and beginning while the scanning is in progress i.e.
beads moving in and out of the beam) and
d) a least-squares fitting technique is used to fit the velocity
component data to the following function (Bell 1984, Bell and
Jackson 1985):

15 &

u=2X X M/r+*sin(@mlx)[Anncos (mg)+Bnnsin(mg)]

mwmO =)

where x = _r-a
b-a

The coefficients A and B are stored in a permanent record so that

the horizontal velocity fields can be reconstructed on a regular

grid allowing other diagnostics to be produced.
Five perspex spacers are placed in the outer wall, enabling velocity fields to be
obtained at five different depths in the annulus. In general between 100 and 550
irregularly spaced speed measurements can be made at each level, with a minimum
sampling time between levels <(or another sample of the same level) of
approximately 12 seconds. The number of speed measurements taken normally
decreases in the lower half of the annulus as it is more difficult to get
unambiguous tracks because the beads above that level mask the field of view.
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DYNAMICS OF ROTATING FLUIDS SEPTEMBER 1986

LECTURE 6: THE INTERNALLY-HEATED ANNULUS

1. Introduction

In carrying out experiments in the laboratory on thermal convection in a
rotating, baroclinic fluid, it is of great importance to establish which
aspects of the flows observed are generally applicable to any fluid system,
and which may be more specific to the particular system under study (e.g.
dependent on particular means of forcing or boundary conditions). One way in

which this may be investigated is by incorporating variations e.g. into the

_construction of the experiment, the fluid properties, and especially the

boundary conditions. Previous lecures have considered variations in the
mechanical boundary conditions (using free or rigid upper surfaces, or surface
topography). The present lecture will consider some effects of variations in

the thermal boundary conditions and the overall distribution of heating and

cooling in the annulus. Thus, for example, by using direct internal heating of
the working fluid, it is possible to investigate the properties of baroclinic

waves in a zonal flow for which the horizontal thermal gradient is non-monotonic,

and therefore much removed from the kind of flow considered in 'classical'

theoretical analyses.

A further motivation for studying such flows has arisen recently from
observations of the atmospheres of other planets, whose composition, scale and
means of thermal and mechanical forcing (and its spatial distribution) may be
quite different from those of the Earth. The atmospheres of Jupiter and Saturn
offer some particularly intriguing phenomena which could be manifestations of
sloping convection under conditions more closely similar to those which can be
obtained in the internally-heated annulus (e.g. see Hide 1981; Read & Hide 1983,
1984; Read 1986a). This potential application of the annulus experiments will

be considered in Section 3 below.

2. Baroclinic waves with internal heating

The laboratory system considered is an annulus of conventional design, but in
which heating may be applied internally via ohmic dissipation of an alternating

electric current passed through the working fluid (which is a weak electrolyte)
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between the (electrically-conducting) sidewalls. Either or both sidewalls can be
cooled in the usual way, allowing a wide variation in the effective thermal
boundary conditions and distribution of heat sources and sinks (for more details
see Hide & Mason 1970, 1975; Read 1986b).

The various regimes of flow obtained in such a system are found to be very
similar to those in the conventional (wall-heated) annulus, with transitions
between them occurring under comparable experimental conditions (again measured
by a stability parameter © and Taylor number T - see Lecture 2) almost
regardless of the distribution of cooling at tge boundaries (e.g. see Hide &
Mason 1970). Thus, axisymmetric flows occur at the lowest rotation rates Q,
regular waves at intermediate  and irregular waves at the highest values of Q.
The most significant difference between the behaviour of internally-heated flows
to those in the conventional annulus appears to be in the form of periodic
'vacillations' - recent work suggests that 'amplitude vacillation' rarely occurs
in the internally-heated annulus, while 'wavenumber vacillation' is the
preferred form of structural vacillation. A selection of regular and irregular
wave flows for cases in which both sidewalls are at the same temperature (AT =

0) are shown in Fig., 1.

The form of the horizontal flow pattern varies considerably in the
axisymmetric and regular wave regimes, depending upon the thermal boundary
conditions at the sidewalls (see Fig. 2). Internal heating forces upward motion
throughout the interior, which must match onto the horizontal boundary layers
via the Ekman suction condition. Thus, the relative vorticity of the
axisymmetric or mean zonal flow is anticyclonic at upper levels and cyclonic at
lower levels (a more detailed analysis is given by Quon 1977; Read 1986b). In
the presence of non-axisymmetric waves, this results in trains of eddies which
are predominantly anticyclonic at upper levels, but with an associated
meandering jet stream whose location and strength depends upon the thermal
boundary conditions at the sidewalls, and hence upon the net inward or outward
radial flux of heat. This may be approximately related to the mean zonal flow

near the side boundaries (where eddies are weak) by

52— 5 +
H(rat) Rz (V/Q) [T(r!dot) o T(rvovt)] u(r’d’t) (1)
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(see Hide & Mason 1970, 1975; Hide 1981), where H is the total heat flux through
a cylindrical surface of height d and radius r, T(r,z,t) and u(r,z,t) are the
mean zonal temperature and zonal velocity respectively, and v is the kinematic
viscosity. Note that the terms multiplying u are negative definite, so that

u may be seen to reflect directly the partition of heat flow between the inner
and outer sidewalls - the result is summarised schematically in Fig. 3 for

comparison with the examples in Fig. 2.

The most striking example occurs when AT = 0, for which heat is removed at
equal rates at both sidewalls. The axisymmetric flow then consists of a
temperature maximum at mid-radius on horizontal surfaces, with strong anti-
cyclonic shear at upper levels between two opposing jet streams (and cyclonic
shear at lower levels). Baroclinic waves take the form of trains of compact,
apparently isolated oval eddies, all circulating in the same sense as the shear
of the mean zonal flow (i.e. anticyclonic at upper levels). Little motion
appears outside the eddies themselves apart from a very weak meandering jet
stream. The isolated appearance of the eddies is most obvious for the lowest
wavenumbers, which occur at high values of Taylor number and ©. Fig. 1(a)
shows the upper level flow for a typical m = 1, in which the eddy is seen to be
concentrated into a narrow range in azimuth. Although the eddy has a 'solitary'
appearance, its structure is not consistent with conventional 'soliton' or
'modon' solutions, but rather has the form of a wave packet encompassing little
more than a single wavelength in azimuth. Non-linear effects are therefore of
great importance in setting up the flow, strongly steepening the basic wave in
azimuth, Further details may be found in Read & Hide (1984).

Like the baroclinic waves in the conventional annulus, the eddies in the
internally heated system contribute significantly to the transfer of heat in
both the horizontal and vertical. Fig. 4 shows the variation of Nusselt number
(a dimensionless measure of heat transfer, see Hide & Mason 1975) with rotation
rate for the internally-heated system, as measured in the laboratory (note that
Nusselt number for an internally heated system is defined slightly differently
than for a boundary heated flow - see Hide & Mason 1970; Read 1986b). The
Nusselt number which would occur if the flow were to remain axisymmetric is also
shown (derived from an axisymmetric numerical model). The presence of regular

eddies maintains the heat transfer close to the level in the absence of rotation
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until the flow becomes irregular.

Recent (as yet unpublished) studies in Met. O. 21 have incorporated a
'planetary vorticity gradient' (similar to a B-effect) by using sloping endwalls,
thereby allowing the depth of the annulus to vary with radius. Similar methods
were investigated in the conventional annulus by Mason (1975). The effect of
sloping boundaries on the internally-heated flows is found to be very similar
to that on other annulus flows, in introducing wave dispersion in a way
qualitaively similar to that of Rossby waves - eddies drift with respect to the
mean zonal flow at a rate inversely proportional to their wavenumber and
proportional to the effective B (= Q). At higher rotation rates, the radial
scale of the eddies may be reduced, so that eddies no longer fill the annulus
gap. This ultimately results in two independent, parallel trains of waves and
eddies adjacent to each sidewall, associated with a series of parallel zonal

jet streams.

3. Eddies on Jupiter & Saturn

Jupiter and Saturn lie well beyond the Earth's orbit at mean solar distances
of 5.2 and 9.6 AU respectively (1 AU = mean Earth-Sun distance = 1.5 x 10'' m).
They are giant planets with radii ~ 7.14 x 10" km and 6.03 x 10" km
respectively, but consist largely of hydrogen (90%) and helium (10%) with small
rocky cores. Both planets rotate rapidly (sidereal periods of 9h 55m and 10h 39m
respectively) and are shrouded in dense cloud decks consisting mainly of ammonia

ice.

Both planets exhibit a variety of eddy-like features at the level of the
upper cloud decks, some of which appear to persist for very long periods (from
months to many years). The best known examples are the Great Red Spot (GRS) on
Jupiter - discovered in the 17th century - and the White Ovals (also on Jupiter)
- observed to form in 1939, Some examples are illustrated in Fig. 5. Most long-
lived eddies on Jupiter and Saturn take the form of oval spots of various
colours, the most common of which are found in regions of anticyclonic mean
zonal shear between pairs of opposing mid-latitude jet streams, and are

characterised by anticyclonic circulation at the upper cloud levels. They in
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include the GRS, the White Ovals and other smaller white spots at higher
northern and southern latitudes on Jupiter, and some similar brown spots on
Saturn. Cyclonic examples (occurring in regions of cyclonic mean zonal shear)
include the brown 'barges' on Jupiter. An intriguing property of many of the
smaller anticyclonic ovals on Jupiter is that they appear in almost regularly

spaced trains in longitude, often interspersed with weaker cyclonic circulations.

Such features do not bear much resemblance to the more familiar baroclinic
eddies in the Earth's atmosphere and in the conventional annulus experiments,
and accordingly, many different suggestions have been made to account for their
nature and various properties (see Ingersoll 1981; Ingersoll et al. 1984; Read
1986a; Williams 1986 for reviews). The resemblance between these features and
the baroclinic eddies obtained in the internally-heated annulus, however, would
suggest that sloping convection was a strong candidate to account for their
nature and origin. Unfortunately, for various reasons the eddy-like features in
all these different models are difficult to compare dynamically with the Jovian

and Saturnian eddies:-

a) The appropriate boundary conditions and background distributions of wind and
temperature are probably rather different for Jupiter and Saturn than for the
Earth. Both major planets are almost certainly entirely fluid throughout,
with no solid surface beneath the clouds. Both generate at least as much heat
in their deep interiors as they receive from the Sun. This has the
consequence that the deep interior is likely to be nearly isentropic and
very weakly stratified, also causing large-scale horizontal thermal contrasts
to be very small (see Flasar 1986 for a review). The observed thermal
contrast between the equator and poles on Jupiter and Saturn at the cloud
tops is very small, At least near the cloud tops (and probably some distance
below - see Flasar 1986) the large-scale thermal contrasts which are observed
are associated with the banded structure of the zonal winds and clouds. The
pattern of zonal winds are consistent with an application of the thermal
wind equation to the observed thermal contrasts with latitude, which are
actually non-monotonic (i.e. the horizontal thermal gradient reverses several
times between equator and poles - cf the laboratory experiments above). More
recent analyses of spacecraft infrared data by Gierasch et al. (1986)

confirm an association between the pattern of zonal winds and clouds and a
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thermally-driven meridional circulation with upwelling in regions of anti-
cyclonic shear (again cf the internally-heated experiments above). Many
aspects of the deep structure of the flow and the effective lower boundary
conditions remain uncertain, however, so that any hypothesis for the Jovian

and Saturnian eddies must continue to be controversial.

b) The available atmospheric data refer only to a thin layer around the cloud
tops. It is not possible, therefore, to determine many useful dynamical
diagnostics with which to test theories (indeed this is one of the major
challenges posed by Jupiter and Saturn to dynamicists - to design an

observational strategy which could yield conclusive results).

4, Long-lived eddies on Jupiter & Saturn as sloping convection?

Given that the relevant similarity parameters (e.g. Rossby, Richardson and
Burger numbers) are of comparable magnitude for the long-lived Jovian and
Saturnian eddies and the baroclinic eddies in the laboratory (although disputes
continue concerning the Burger number, e.g. see Read 1986a), it is plausible
that the atmospheric features may indeed represent a form of sloping convection
similar to that obtained in the internally-heated annulus. The detailed
resemblance between the mean flow structures, eddy flow patterns and thermal
structures (so far as they can be determined for the major planets) serve to
support such an analogy, although these factors are not entirely conclusive in
themselves. The relevance of quasi-geostrophic 'free modes' to the laboratory
flows, as discussed in Lecture 4, may also be of importance in this context,
since similar theoretical solutions form significant components of many
competing theories of the Jovian features (see Read 1986a). Further observations
tailored towards answering the many questions which arise from this hypothesis
are clearly required, almost certainly necessitating data from new spacecraft
missions in due course (currently planned missions include 'Galileo' orbiter
and probe to Jupiter and the Hubble Space Telescope - both seriously delayed
by the recent Space Shuttle disaster!).

Nonetheless, the available observations do demonstrate that eddies occur in

the atmospheres of the major planets which are characterised by a high degree
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of symmetry in the spatial organisation of the flow, and long persistence times

despite the presence of chaotic small-scale features in the background flow.
Laboratory studies have indicated the importance of non-linear advection in
helping to sustain the regular flows, which would seem to contradict the
conclusions of some theories of atmospheric predictability concerning the role
of advection in promoting the breakdown of an initial pattern of flow into
irregular chaotic motion. Should it ultimately be demonstrated that the long-
lived eddies on Jupiter and Saturn are manifestations of sloping convection, it
would serve to confirm the latter process as an important paradigm for large-

scale flows in planetary atmospheres.
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Figure 3: Schematic illustrations of the variations of the impressed
temperature gradient with radius r (left column); dT/dr, proportional to
minus the top surface zonal velocity (see Eq (1)) (centre column); and
the main characteristics of the top surface flow pattern in the steady
wave regime based on the integral constraints expressed in Eq (1) (right
column) - see text and Hide & Mason (1970, 1975).
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Figure 4: Variation of Nusselt number (a measure of the total heat transfer
with respect to that due to conduction alone) for an internally-heated annulus
as a function of rotation rate . Results shown are laboratory measurements by
Read (1986b and unpublished) for various baroclinic wavenumbers (denoted m),
compared with the axisymmetric heat transfer over the same range of {,

obtained from an axisymmetric numerical model (Read 1986b). The terms 'wnv' and
'irr.' denote wavenumber vacillation (a form of structural vacillation) and
irregular flows respectively. '
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Figure 5: Some examples of long-lived oval eddies in the atmospheres of Jupiter
and Saturn: a) Jupiter in a cylindrical projection (from Voyager spacecraft
images), showing the Great Read Spot (GRS), White Oval (WO) and other smaller

features.

{&) Brown Spot | on two successive
Saturn rotations, showing anticyclonic (clock-
wise in the northern hemisphere) rotation
around its periphery. North is to the upper
right. The spot’s latitude is 42.5°N and it dnifts
1o the east at 5 m sec”'. The major diameter
of the spot is 5000 km. A green filter was used
in these narrow-angle images taken about 2
days before Voyager 2's encounter with Sat-
urn.
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Velocity vectors superimposed onto an imuge of a long-lived cyc

« burgey» on Jupiter, obtained from « Voyuager » data by Huizes et al.
(1981). The tails on the vectors point in the direction of the flow.
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Dynamics of rotating fluids September 1986

Lecture 7: Numerical modelling of annulus flows

There are two main reasons why numerical modelling of annulus flows is

important:

(i) through comparisons of model results with good laboratory
measurements it is possible to test numerical models of rotating

baroclinic flow in a unique way;

(ii) good simulations provide extensive data which are invaluable
in understanding the flows and in constructing simplified

mathematical and conceptual models.

In this lecture both (i) and (ii) will be discussed, but the emphasis will be on
(i). The annulus system we shall consider is the familiar 'wall-heated' one

in which concentric cylinders are maintained at different temperatures. (The
upper and lower bounding surfaces are horizontal and rigid.) The numerical model
- the 'Met O 21 model' - is a grid point formulation based on the (nonhydrostatic)
Navier-Stokes equations for the motion of an incompressible baroclinic fluid;

a typical resolution is 16 (vertical) x 16 (radial) x 64 (zonal) points. Details
are given by James et al (1981) and Hignett et al (1985), and a similar

- though slightly less comprehensive - model was used by Williams (1969),(1971).

In the atmosphere the forcing processes are many and various. Momentum

sources and sinks arise from sub-grid-scale motions of several different types:
small-scale turbulence, cumulus convection, cumulonimbus, gravity wave motion &c.
Diabatic heating and cooling occur as a result of radiative effects, sub-grid-scale
motion (see above), latent heat release/absorption in condensation/evaporation &c.
All these processes are highly variable in space and time, and their representation
or 'parametrization' in atmospheric numerical models is a matter of considerable

complexity and uncertainty.




On the other hand, in laboratory systems such as the rotating baroclinic
annulus the only significant forcing processes are molecular viscosity and
conductivity (which can be represented to high accuracy using established
formulae), and over wide ranges of conditions all flow scales can be resolved
by tractable grids. Thus no "parametrizations" are required in numerical
simulations of these systems; and comparison with experimental measurements

enables the dynamical formulation of numerical models to be tested ('verified')

to an extent which is virtually impossible for atmopheric models through direct

comparison with meteorological data.

Comparisons with laboratory measurements can be made at a qualitative and a

quantitative level.

Qualitative

The main flow phenomena of the wall-heated rotating annulus are axisymmetric
flow, steady waves, intransitivity, wavenumber transitions, hysteresis, amplitude
vacillation, structural vacillation and irregular flow. All of these have been
qualitatively simulated using the Met O 21 model (though little attention has been
paid as yet to structural vacillation and irregular flow). See Hignett et al for
a detailed description.

Quantitative: non-axisymmetric flow

Hignett et al also describe a quantitative comparison of a steady
wave 3 flow in the 'small annulus' system (inner and outer radii 2.5 and 8.0 cm,
depth 14.0cm) for a temperature difference of 4 deg C and a rotation rate of 1.0

-1
rad s'3

Temperatures are measured at mid-radius and mid-depth using a ring of 32
thermocouple junctions. Total heat flux by the working fluid is calculated from
the inflow and outflow temperatures of the water circulating in the inner (cool)
wall. In a physically separate apparatus having the same dimensions, horizontal

velocity components are obtained at 5 levels using a particle tracking technique.

Table 1 and Figure 1 show some of the experimentally measured quantities and
the corresponding numerical model values. Note that the simulated main-wave

phase speed is in better agreement with the value determined from the temperature
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field. This is encouraging because the particle tracking system disturbs the flow

less than the ring of thermocouple junctions does - and the numerical model assumes

no disturbance by any measuring system. Total heat fluxes are in agreement

to within 15% and main-wave temperature amplitudes to better than 5%. The
agreement between the measured and simulated zonal mean flow (Figure 1) is very
good at all 5 levels. A marked 'double-jet' structure is present. This feature
is typical of steady wave flows and is important theoretically (see below):

Figure 2 compares the numerical results for steady wave and axisymmetric flow.

Quantitative: axisymmetric flow

Recent work in Met O 21 has focussed on comparisons of simulated and measured
axisymmetric flow. High resolution integrations are fairly economical in the
axisymmetric case and so it is easy to examine resolution effects. Figure 3
shows results from a series of such comparisons. There is very good agreement
between the measured and simulated fluxes; in fact, the lower resolution (16x16)
numerical results are closer to the measured fluxes than the high resolution
(32x32) results are — although both are within the the estimated error of the

measurements.

These comparisons revealed an unexpected weakness in the Dufort-Frankel
viscous scheme. At low rotation rates and high resolution (but not otherwise)
the model produced spurious circulations near the inner cylinder and heat fluxes
which were too high by 5 to 10%. These numerical phenomena were traced to the
Dufort-Frankel representation of the viscous terms after a long series of model

reformulations. Use of a simpler (and less numerically robust!) viscous scheme

cured the problem and led to the quantitatively pleasing results shown in Figure
-1
3 for JL = 0.1 rad s . This is a good illustration of the use of annulus flows

to test numerical schemes.

Theoretical models of annulus flows

The transition from axisymmetric to non-axisymmetric flow is quite well
explained by the short-wave cut-off which is found in the Eady problem
(lecture 3). Eady waves are unstable only for nondimensional wavenumbers P < 2.399

Thus, in a given annulus, the minimum allowable value of P may be greater than
2.399 and so no instability occur: the unstable waves may be too big to fit into
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the annulus. By increasing the rotation rate, F) is reduced for a given true
space scale and hence instability is favoured. Calculated locations of the upper

transition to axisymmetric flow are in good order—of-magnitude agreement with the

measured location. (A stronger statement is not supportable because the theoretical

cut-off turns out to be sensitive to the assumed mean flow structure.) To account
for the lower transition to axisymmetric flow it is necessary to invoke viscous
and conductive effects. Hide and Mason (1975) review instability theories and

their relevance to the axisymmetric/non-axisymmetric transition.

Theoretical explanation of the regular regime is more difficult. Much work
has been done by applied mathematicians on 'weakly nonlinear theories'. These
attempt to describe analytically the nonlinear behaviour of weakly unstable waves:
under various circumstances steady, vacillating or irregular wave solutions occur
(see Hart (1979) for a review). Weakly nonlinear treatments are monuments to the
algebraic tenacity of their creators and they appear to account at least
qualitatively for observed flows in the mechanically-driven 2-layer system; but
they are probably of little relevance to the thermal annulus. From Figure 2 it
is clear that the zonal mean flow in a steady wave may be radically different
from that occurring in axisymmetric flow at the same rotation rate and it seems
unlikely that any weak interaction theory can explain the difference. Also, the
theories predict amplitude vacillation at high supercriticalities (within their
assumed framework) whereas in the thermal annulus it occurs next to the stability
threshold for each wavenumber (Hignett 1985). It is possible that weakly non-
linear theories are applicable, but in their usual manifestations assume an
inappropriate marginally stable zonal flow. This suggestion relates very much

to the question of marginally-stable flows which was raised in lecture 3.

Read (1985) and White (1986) have put forward free-mode models for steady
wave flow in the internally-heated and wall-heated annulus systems. Their models
have some success in accounting for the gross structure of the zonal mean flow
and some of the features of the waves, but they are unsatisfactory in some
respects; representation of forcing and dissipative processes is desirable but

mathematically unsavoury.

The transition to irregular flow is broadly accounted for by the theory
of Rossby wave instability (see Grotjahn (1984) for references). Behaviour in



irregular flow should be comparable with theories of geostrophic turbulence (see

Charney (1971)) but little work has yet been done on this comparison. A practical

difficulty is that irregular flow is attainable in Met O 21's present laboratory

systems only under extreme experimental conditions.
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Experiments with rotating fluids

By R. HIDE
(Presidential Address: 21 April 1976) /

1. INTRODUCTION

At the turn of the present century an eminent physicist expressed the firm opinion that
perfectly accurate weather forecasts would be available by the year 1950. He did not
consider it necessary to explain how this development would come about, presumably
because he shared the view of many of his contemporaries that further work on macro-
scopic systems satisfying the laws of classical physics would be a matter of mere routine,
requiring no more than the diligent efforts of a sufficient number of dedicated but not
necessarily inspired investigators. This attitude led to the neglect of important areas of
physics, so it is hardly surprising to find today, with three-quarters of the twentieth century
gone, that insufficient knowledge of various hydrodynamical processes still constitutes
a major difficulty not only in meteorology, but also in oceanography and other geophysical
sciences.

In this address I propose to discuss one area of ‘geophysical fluid dynamics’ in which I
have been engaged with various colleagues over a number of years, namely the study of
rapidly-rotating fluids. Our work has, by choice, centred largely on laboratory investiga-
tions, but mathematical studies are found necessary in the formulation of crucial experi-
ments and the interpretation of their results. Numerical studies employing high-speed
electronic computers are becoming increasingly important in our work, but in spite of their
many attractions computers are still comparatively very expensive to use and to date they
have been employed successfully only in detailed investigations of the less complex types of
flow encountered in laboratory work.

It is unnecessary to apologize for discussing simple systems that can be realized
in the laboratory, and asserting their relevance to the science of atmospheres and oceans,
since the essence of basic science, upon which all applied sciencc depends, is the obtaining
of general results concerning well-defined problems, not limited results concerning only
vaguely-defined problems. A critical review of recent progress made with the study of
rotating fluids would, however, take much more than an hour to present and interest only
specialists in dynamics, so in preparing this address to a wider audience I considered it
preferable to take a didactic approach, with a view to showing that a few theorems and
other basic theoretical results (see section 2) suffice to provide considerable insight into the
behaviour of a variety of mechanically and thermally-driven systems, such as those few
selected for discussion under the various section headings of this paper, namely flows due to
oscillatory mechanical forcing (section 3), steady source-sink flows (section 4) and thermal
convection due to an impressed horizontal temperature gradient (section 5).

1
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Figure 1. An attempt to illustrate the relationship between atmospheric scieace, applied meteorology and
research on basic processes (see text).

But with an audience consisting mainly of meteorologists it is necessary before going
into details to consider how the study of basic processes bears on atmospheric science
generally and is thus able to contribute, at least potentially, to practical meteorology. A
rough and inevitably over-simplified attempt to portray the complex relationships involved
is illustrated in Fig. 1. Box B at the top right-hand corner represents meteorological services,
the provision of which to the public and to other scientists involves the application of
meteorological knowledge to a wide range of practical problems. Box A at the top left
represents the routine acquisition and analysis of (a) observations of the earth’s atmosphere,
which are made largely to meet the needs of meteorological services, and (b) observations of
the atmospheres of other planets, the collection of which was initiated over a century ago by
amateur astronomers but is now undertaken in collaboration with observatories staffed with
professional workers. Box D at the bottom right represents the development of a body of
knowledge known as atmospheric science, which comprises the systematic description ot
interpretation of atmospheric phenomena, as revealed by observations, in terms of basic
physical* and chemical processes. Box C at the bottom left represents research on basic
processes, involving experimental field or laboratory (including numerical) investigations
rendered crucial through close contact with appropriate theory. Box C would not, of course,
be needed if the textbooks of physics and chemistry contained all the information and ideas
required for the purposes of atmospheric science.

Theory without contact with experiments is an uncertain and often pointless venture
and the direct link AD between observations and atmospheric science is weaker than the
indirect link through the intermediary of experiments on basic processes (box C). The link
AC involves speculation, but when this is followed by well-formulated theories fully tested

® Here ‘physics’ is taken in the generally accepted sense and not as implied by unfortunate jargon employed by some dynamical
metoorologists when, in their descriptions of aumerical models of large-scale motions in the atmosphere, they use the term 10 refer 10
processes not explicitly represented in the models, such as small-scale dynamical processes, radiation, clouds, etc.
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by crucial field or laboratory studies, true scientific advances are made and, what is equally
important, practical meteorologists are presented with opportunities to improve the services

I they are asked to provide. Laboratory experiments with rotating fluids fall within the
middle and lower subdivisions of box C. They are comparatively cheap to carry out and

I could easily be pursued without reference to observational studies in meteorology, oceanog-
- raphy, etc. Indeed, in retrospect one can see that some of the most relevant work has been
motivated not by the direct demands of atmospheric science and practical meteorology but
by sheer scientific curiosity. This state of affairs is by no means unusual when seen in the
context of the development of ideas in other fields of science, and a few leading meteorolo-
gists have been quick to af preciate and exploit the results of laboratory work. Others,
however, including several prominent workers, have evidently misunderstood the role of
laboratory experiments by supposing, unjustifiably in my opinion, that the objective of the

I laboratory work should be the construction of purblind models merely for the purpose of
improving the direct link AB or AD in Fig. 1. Much has been said by these critics about the
differences between laboratory systems and the real atmosphere, and it is true that without a
method of simulating a radially-symmetric gravitational field it will never be possible to

, construct a perfect laboratory ‘mode!’ in the engineering sense. But surely the very essence of

' the problem of understanding the circulation of the atmosphere is not just to create a

. Teplica but to study a hierarchy of related but different systems; it is a matter for investiga-

; tion whether or not the shape of the boundary, for example, is important, not for a priori
I£ assessment (see e.g. Hide 1969, Monin 1972). 4
|

Ig _ 2. SOME USEFUL THEORETICAL RESULTS

() Eguations of motion of an incompressible Boussinesq fluid. When dealing with most
geophysical and laboratory systems it is sufficient to consider the behaviour of a fluid in
which (a) the velocities are so small in comparison with the speed of sound that the assump-
tion of incompressibility is valid, and (b) the accelerations are so small in comparison with
gravity that the Boussinesq approximation (wWhich takes density variations into account in

l the buoyancy term in the equations of motion but not in the other terms) can be used. When

referred to a system that rotates with steady angular velocity Q relative to an inertial frame,

lé the equations of continuity and momentum of such a fluid of uniform kinematic viscosity
. v and variable density 5(1 +6), where 5 is the mean density and 6 < 1, are:

l Vu=0 2 : : . (2.1)
and 0u/t+(22+&)xu = —V(P+4u.u)+g6+vW2u. : (2.2)

Here u is the Eulerian flow velocity relative to the rotating frame and ¢ = Vxu is the
_ corresponding vorticity vector, t denotes time, g the acceleration due to gravity plus centri-
. fugal effects, and pVP is equal to the pressure gradient minus gp.

! Variations in density may be due to changes in temperature, salinity, etc., and in
general @ satisfies an equation of the form '

00/0t+(u.V)0 = yV*6+0 . : : (2.3)

| where y is a diffusion coefficient and Q represents effects due to internal sources; in the case

| of thermally-driven flows Q is proportional to the rate of internal heating per unit mass.
I When the r.h.s. of Eq. (2.3) vanishes we have

i
|
!
i

Bolpray e . : 2.4)

I (where D/Dt = 9/dt+u.V), implying that the value of § of an individual fluid element then
remains constant throughout the motion. e B
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(if) Energetics. An energy equation follows from Eq. (2.2) when that equation js
multiplied scalarly by u (noting that the second term on the Lh.s. vanishes because it
represents a force acting at right-angles to u and therefore does no work); whence

d(3u.u)/dt = —v§.8+u.90—V.[4u(u.u)+ uP + (& x u)]. ; (2.5)

When integrated over a given volume, the Lh.s. represents the rate of change of total
kinetic energy and the first term on the r.h.s. (Which is essentially negative) represents
viscous dissipation of kinetic energy. The second term on the r.h.s. represents the rate at
which buoyancy forces convert into kinetic energy the potential energy of gravity acting on
the density field. It can in general take either sign, depending on the sign of the average
correlation between density variations, proportional to 6, and the vertical component of
velocity, proportional to u.g, but in the case of thermally-driven motions (ses e.g. Dutton
and Johnson 1967; Van Mieghem 1973; also section 5 below) this buoyancy term is essen-
tially positive when integrated over the whole system. ;

The last term on the r.h.s. represents mechanical forcing. When integrated, this term
can be converted into a surface integral comprising thres contributions representing,
respectively, the advection of kinetic energy over the surface, the rate of working of normal
pressure forces, and the rate of working of tangential viscous forces. Each contribution can
take either sign but their sum when integrated over the whole system must be positive in
cases of mechanically-driven flows (see sections 3 and 4).

(i) Vorticity equation; Jeffreys’ theorem and Ertel’s theorem. Equation (2.2) expresses
the balance of forces acting on individual fluid elements. The corresponding torque balance
is expressed by the vorticity equation obtained by taking the curl of Eq. (2.2); thus

080t +.V)E-[2Q+8).V]u = —gx Vo+vV2E, ; (2.6)

This equation leads directly to a general result which goes under several names but is
conveniently referred to as

hydrostatic equilibrium obtains, defined as u = everywhere. By Eq. (2.6), u = 0 when
gx V8 = 0, implying that hydrostatic equilibrium is impossible if density variations occur on

level surfaces. Jeffreys’ theorem is a direct corollary of Bjerknes’ well-known circulation

theorem (see Eliassen and Kleinschmidt 1957); it provides the most direct demonstration
that the atmosphere must circulate under the influence of solar heating, which maintains a
generally north-south density gradient on level surfaces.

We now introduce a quantity known as ‘potential vorticity’ and defined as

(2Q+8&).VA, . 4 : ; 2.7
where A is any quantity satisfying
DA[Dt =0 . : - : (2.8)
(cf. Eq. (2.4)). By Eq. (2.6)
D[(2SZ+§).VA]/D: = —(gx V0).VA+vVA.V3¢ A (2.9
and therefore D[(2Q+¢&).VA]/Dt =0 . : : (2.10)

when the fluid is homogeneous (V0 = 0) and inviscid. This is Ertel’s particularly useful
theorem (see e.g. Charney 1973; Eliassen and Kleinschmidt 1957; Greenspan 1968 ; Krauss
1973; Pedlosky 1971) for an incompressible Boussinesq fluid.

(iv) Two-dimensional flows: Taylor’s theorem and Fjortoft’s theorem. When the fluid is
homogeneous (V8 = 0) and, in virtue of the boundary conditions, u = (x, o, w) is indepen-
dent of the coordinate = parallel to the rotation axis, the relative vorticity has no (transverse)

‘Jeffreys’ theorem’ and concerns the conditions under which
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components in the (x, y) directions (i.e. § = (§,n,0) = (0,0,0)) and the axial component of
¢ satisfies

a0t +u 0L |dx+v 8L[dy = v(8%|0x*+ 6%L/dy?). 2 (2.11)

The angular velocity vector Q does not appear in this equation, implying that if u is indepen-
dent of z and the boundary conditions on u are independent of S, then u is independent of Q2 (see
Taylor 1917). The pressure field, on the other hand, is not unaffected by rotation; by Eq.
(2.2) P exceeds its value for = 0 by an amount P where

VA+2Qxu = 0. : ; ; 2.12),

Laboratory experiments bearing on this theorem have been carried out by Taylor (1917)
who demonstrated the existence of the Q-dependent part of the pressure field by determining
the trajectories of moving objects, and by Hide (1968), who investigated flows due to various
distributions of sources and sinks and demonstrated that u is independent of Q when sources
and sinks of the monopole (but not dipole) type are absent but not when they are 'present
(see section 4).

The vanishing of the r.h.s. of Eq. (2.11) when viscous effects are negligible shows that in
two-dimensional flow of an inviscid homogeneous fluid the vorticity remains constant
throughout the motion (cf. Eq. (2.23) below), so that the total enstrophy (per unit length in
the z-direction)

¢ = [[{*dxdy, : : ; (2.13)

where the integral is taken over the whole system, remains fixed (i.e. d€/dt = 0). This
result represents a powerful constraint on non-linear interactions between different scales of
motion, for in order to conserve both total enstrophy and total kinetic energy (per unit
length in the z-direction)

X = [[4p(u*+0vP)dxdy . 2 % (2.14)

(cf. Eq. (2.5)), the transfer of energy from one scale to a smaller (larger) scale must be accom-
panied by the simultaneous transfer to a larger (smaller) scale. Such behaviour of two-
dimensional systems, as expressed by this ‘anti-cascade’ theorem of Fjertoft and others
(Fjertoft 1953; for additional references see Charney 1973 and Lilly 1973) contrasts strongly
with isotropic homogeneous three-dimensional turbulence, where the energy cascade from
larger to smaller scales involves a rapid increase in enstrophy, associated with the three-
dimensional stretching and twisting terms in the vorticity equation. Whereas the energy
spectrum of three-dimensional turbulence follows Kolmogoroff 's celebrated (wavenumber) ~ ¥
(energy-dissipation rate)? law, that of two-dimensional turbulence satisfies a (wave-
number) ~*(enstrophy-dissipation rate)* law.

(v) Geostrophic flow; thermal wind equation and Proudman’s theorem. Geostrophic flow
occurs in regions where the relative acceleration term Du/Dt(= du/dt+§ x u+V(3u.v)) in Eq.
(2.2) and the viscous term vV’u can be neglected in comparison with the Coriolis term
20 x u. The Coriolis force then balances the non-hydrostatic component of the pressure
force exactly, so that '

2Qxu = —VP+gb. : : 2 (2.15)

This equation is mathematically degenerate, being of lower order than the complete equation
of motion and consequently incapable of solution under al/ the necessary boundary condi-
tions and initial conditions, and it follows that regions of highly ageostrophic flow (occurring
not only on the boundaries of the system but also in the localized regions of the main body of
fluid) are necessary concomitants of geostrophic motion. The geostrophic equation nevertheless
expresses with good accuracy various important properties that slow, steady hydrodynamical




(e-eew s dorapidly-rotating fluid must possess neari

applied the equation usually indicates the nature and
features.

A rapidly rotating fluid can be defined as one for whic

Y everywhere, and when Judicious
location of esseatially ageostroph

a the Rossby number

& = (Du/Dty [ (22 x u) 2.16
and the Ekman number

E = (W) [ (29 xu)

are both very much less than unity, the symbol <> meanin
taken over the whole volume occupied by the fluid, so that ¢
Is a typical relative flow speed and I a charact

. point of view, geostrophic flow occurs in the [
equation (2.6) then simplifies to

(2.17)

g the root mean square value
=0/IQ and E = y/2Q if 0
eristic length scale. From a mathematica]
mit when ¢ = 0 and E — 0. The vorticity

22.V)u = gx V8

fii (2.18)
- expressing a balance betwesn the gyroscopic torque and the gravitational torque.
When V6 = 0 Eq. (2.18) reduces to
20 Gu/dz = 0, (2.19)

i a result first proved by Proudman (1916) and later

: names (e.g. Proudman’s theorem, Proudman-Taylor theorem, Taylor-Proudman theorem).

. In words, Proudman’s ‘two-dimensional’ theorem states that geostrophic motion of a

: homogeneous fluid will be the same in all planes perpendicular 10 the axis of rotation. This

- fundamental result underiies the interpretation of a very wide range of phenomena in
mechanically-driven flows (ses sections 3 and 4 below).

: Suppose that (U, V, W) are the &, Y. 2Z) componeats of u, where Z is the downward

; vertical coordinate, so that in these coordinates g = ©0,0,9), W is the corresponding

* vertical component of motion, and (U, V) are the horizontal componeats. Whea V8 = 0
we have, by Eq. (2.18),

by others and which goes under various

QQV)(U,V, W) = g(~36/5Y, 30/5X, gt (2.20)
In cases when the horizontal component
Eq. (2.20) give the familiar therma] wind equation

. the vertical rate of change of horizonta] geostrophic motion and the horizontal density

+ gradient. It may be shown (Hide 1971) by combining Eq. (2.20) with Eq. (2.4) and serting
. 66/3r = 0 that under steady isentropic conditions

CEN e cp iz o
Uus+y?

implying that even when, as a result of strong
tal flow varies rapidly with respect to the
: change of the direcrion of horizonta] flow
- when W36/6Z = 0.

: (vi) Quasi-geostrophic flow of an inviscid
E<lande < 1,andif E < ¢ the dominant a
fquasi-geostrophic motion are provided by ad

density inhomogeneities, the speed of horizon-
axial coordinate z, the corresponding rate of
may be quite slow and even vanish altogether

oA

fluid. Quasi-geostrophic flow occurs when
geostrophic contributions in the equations of
vective effects, not viscosity. Then

ou/it+(u,. .V )u+2Qxu = —YP4+go . : (222
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where u,.V, = ud/dx+ vd/dy, and the corresponding equation for ( is
a¢/ot+(u,.V, ) =2Q0dw[dz—(g x V0). : i (2.23)

(see Egs. (2.2), (2.6), (2.11), (2.16) and (2.17)). Equation (2.23) shows that in quasi-geostrophic
motion of a homogeneous (i.e. (g% V6), = 0) incompressible fluid, changes in the relative
vorticity of @ moving fluid element are brought about largely by axial stretching, as represented
by the term 2Q dw/dz on the right-hand side.

Suppose for the moment that the buoyancy term can be neglected and that the fluid is
bounded by rigid end-walls in z = z,(x,y) and z = z,(x, y) where z, > z,. When effects due
to viscous boundary layers are negligible (see section 4), the term 2Q dw/dz equals 2Qu,.V,
ln(z,—z,) (to sufficient accuracy) and the equation (2.23) reduces to an expression for the
conservation of potential vorticity (2Q+{)/(z,~z,), namely

{8/dt+u,.V,} {2Q+0)/(z,—z)} = 0. - (2.24)

(Equation (2.24) follows directly from Ertel’s potential vorticity theorem given by Eq. (é.lO)
when u.V is approximated by its transverse part u,.V, and A = (z—z)/(z,—z) or A =
(Zu—'Z)/(Zu—Zx).)

If 6 satisfies Eq. (2.4) we can set A = 6 (cf. Eq. (2.8)) in Eq. (2.9), and if we further
assume that v = 0 the r.h.s. vanishes, giving

D[2Q+8).V6]/Dt = 0. . e (2.25)

In the geostrophic limit, this potential vorticity equation for a non-homogeneous fluid has
no general form analogous to Eq. (2.24), but for a shaliow system, such as the earth’s
atmosphere (see e.g. Charney 1973; Obukhov 1974; Pedlosky 1971; Phillips 1963), in
which ¢ < 1 (but > E), 8 = 84(Z)+66 with 66 < O, P = Po(Z)+0P with 6P < P,
and f is the vertical component of 2L, so that by Eq. (2.15)

(&) = —f~X0*/6X*+8%*/0Y*)éP and 68 = g-lo(6P)/ezZ, . (2.26)
Eq. (2.25) reduces to

a 0 d 6, . 0% PRl REs

(Et-l. U-a—}z‘l" Vﬁ){(é‘f) [f+f(aX2+aY2+ 9500/52):]513} = 0. £2.27)
Equation (2.27) is of central importance in a wide range of theoretical investigations in
dynamical meteorology and oceanography, including the study of ‘geostrophic turbulence’
(see section 5), where the constraints on potential vorticity represented by Eq. (2.27) (or
(2.24)) place severe restrictions on the types of non-linear interactions that are possible.
This results in behaviour (see e.g. Charney 1973; Lilly 1973; Rhines 1976) which is analo-
gous in some respects to that of two-dimensional turbulence in a homogeneous fluid (see
e.g. Egs. (2.12) and (2.13) above and Figs. 10 and 11 below).

3. FLOWS DUE TO OSCILLATORY MECHANICAL FORCING

A fluid differs in an essential way from a solid in its inability in the absence of rotation
(and of buoyancy forces due to the action of gravity on stable density stratification or
magnetohydrodynamic effects) to resist shearing stresses and thereby support shear waves
(see e.g. Lighthill 1966). When the fluid rotates relative to an inertial frame the constraints
imposed on the system by angular momentum requirements are such as-to endow the fluid
with pseudo-elastic properties, and a brief account of the so-called ‘elastoid-inertial oscilla-
tions’ or, more briefly, ‘inertial oscillations’, which these properties make possible provides




a suitable starting point for our discussion of various
of rotating fluids.

Relative to a state of solid-bod
u'(r, ), P'(r,1), 6'(r,1) (r being the position vector) of an incom

steadily-rotating, inviscid fluid which is stably stratified (j.e. 6
and d6,/dZ > 0, se=

pressible, uniformly anc

= 0,(2) in the basic state
Egs. (2.1), (2.2) and (2.4)) satisfies the following linear equations

V' =0 : : : G.L1)
0w (Gt +2Q x 0 = —VP' +¢6’ ) : (.2
36'|0t+ W' dB,/dZ = 0. o (e

We can satisfy Eq. (3.1) by takingu’ = V x A. The vorticity equation obtained by taking the
curl of Eg. (3.2) (ses Eq. (2.6)), namely

G§'[dt = QY)W —gx Vs . ; : (3.4
(Where &' = curlu’) then takes the form : ‘
a*(V2A)/6r* +(2Q.V) o(V x A)[Gt+(dB,/dZ) g xV(VxA), =0 . G5

whea d6,/dZ is constant.

There have been many studies of the highl
equation (3.5). It is instructive to comsider
dimensions of the container (but large enou
Such disturbances propagate
‘inertial-gra

disturbances on a scale much less than the
gh to ensure that viscous dissipation is negligible).
as highly-dispersive elliptically-polarized shear waves — the
vity waves’ — with Fourier components expi(wt—xk.r) where the angular fre-
quency w is related to the waveaumber vector x through the dispersion relationship

0 = [(2.Q.x)z+(Nx1c)2]/x.x; W CIE (3.6)

here N = gMV/|g|, N being the Brunt-Viisila frequency (gdf,/dZ)* (ses Eckart 1960).
Disturbances on larger scales, comparable with the dimensions of the boundaries of the
system, suci as the familiar Rossby-Haurwitz waves (ses e.g. Gresnspan 1968; Pedlosky
1971; Platzman 1968; Thompson 1961) behave in a more complicated way but, in commor
with plane waves, when N = 0 the angular frequency w never excesds 2Q in magnitude.
This maximum value is attained in inertial waves, for which by Eq. (3.6)

w? = (2Q.x)*/x.x, 5 : 3 G.7D

when the wavefronts and displacements of particles, which now move in circular orbits, are
everywhere perpendicular to Q. In accordancs with Proudman’s theorem (ses Eq. (2.19) we
have the other extreme w = 0, corresponding to steady flow, when the wavefronts are
parallel to Q, i.e. 2Q.x = 0. .

Several laboratory studies of inertial oscillations are described in the literature (ses
Greenspan 1968). Aldridge and Toomre (1969) have reported a particularly detailed investi-
gation based on experiments with a rigid fluid-filled spherical cavity whose rotation speed
about a fixed axis was forcibly varied in a slight but sinusoidal manner about a non-zero
value (ses Fig. 2). Their objective was to excite inertial eigen-oscillations within the rela-
tively low viscosity fluid through the mild pumping of the thin viscous boundary layer (ses
section 4 (ii) below) near the wall - the energy input to the system being represented by the
term vV.(ux §) in Eq. (2.5) - and to measure and compare with theory some of the proper-
ties of such modes. Several distinct resonances were detected via pressure measurements
made along the axis for various ratios of the excitation to the mean rotating frequeacy. For
the three most pronounced of these modes, the observed frequency ratios Q/w were found to

phenomena eacountered in the study ‘

y rotation with angular velocity Q, a weak disturbance

Y anisotropic oscillations satisfying the wave-

hd
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Figure 2. Axisymmetric inertial oscillations of a rotating liquid sphere (Aldridge and Toomre 1969):
(a) Fluid container and pressure probe. The ‘container (shaded), which was made of two perspex hemi-
spheres fitted together at the equator, rotated about a vertical axis with angular speed Q+ ewcoswt. (b)
Streamlines of meridional flow for some equatorially-symmetric modes of various values of (n, m) where n is
the number of modes in a ‘family’ and m measures the ratio of transverse to axial scale. (c) Determinations of
the amplitude of the pressure oscillation at the centre of the sphere for & = 8-0° over a range of values of
Q/w, showing four of the seven resonance peaks detected in the experiments. The full line is based on theory,
which gives the appropriate (n, m) values for each resonance.

agree with theory to better than 19%. These experiments and Aldridge’s further work
(Aldridge 1972) on spherical shells have proved instructive to mathematicians concerned
with ill-posed problems in the theory of differential equations. As Stewartson has em-
phasized, in the determination of eigen-frequencies from Eq. (3.5) it is necessary to solve a
hyperbolic differential equation, which has real characteristics, under boundary-conditions
of the Dirichlet-Neumann type, and the absence of a general theory of such equations
provides little comfort for theoreticians concerned with wave motions in atmospheres,
oceans, and the earth’s liquid core, where the main geomagnetic field originates. (For
references see Acheson and Hide 1973; Brown and Stewartson 1976; Hide and Stewartson
1972.)

Geophysical systems such as the atmosphere and oceans are subject to the combined
constraints of rotation and stable density stratification. Elementary wave motions in such
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systems are the inertial-gravity waves governed by the dispersion relationship given by
Eq. (3.6) when all components of x are real. That equation also admits certain physically-
acceptable oscillatory solutions with one component of imaginary. For example, when Q
and g are parallel (so that z = Z), x = (k,il,m) and w? = N2k?|(k* +m?) we find

I = +20kjw = +2Q(k* +m?)*/N. : : (3.8)

This is the solution for edge-waves confined by the interaction of buoyancy and Coriolis
forces to the vicinity of a vertical wall, the presence of which is essential. Coriolis forces are
everywhere balanced by pressure forces and influence the structure of the wave perpendicular
to the wall and its direction of propagation along the wall, without affecting the wave fre-
quency or the shape of the trajectories of individual fluid elements, which move in straight
lines parallel to the wall. These so-called ‘Kelvin waves’ were first discussed in connection with
the interpretation of tidal records at ports on either side of the English Channel (ses Krauss
1973). They are readily produced in the laboratory and they have been invoked in the
interpretation of wind observations in the tropical stratosphere, where, so far as wave
motions are concerned, the change in sign at the equator of the vertical component of the
earth’s angular velocity vector introduces constraints roughly analogous to those imposed
by the presence of a rigid impermeable wall. (Ses note added in proof on page 28.)

We have seen that setting w = 0 in Eq. (3.7), which applies when the fluid is homogen-
eous, yields the Proudman theorem and it is of interest to establish the corresponding
result for a stably-stratified fluid. By Eq. (3.6), when @ = 0 we have

(2Qx)* = —(Nxx)? ; ; ; (3.9)

which cannot be satisfied unless x has both real and imaginary components. If, for example,

the disturbance has a real horizontal wavelength 1, then its amplitude falls off exponentially
in the axial direction with an e-folding scale :

~Qly/7N, - ; . ; (3.10)

whereas in the case when the disturbance has an axial wavelength 4, the disturbance is
confined to a region of horizontal dimensions

~N1,/4Qx, . : . (3.11)

the so-called ‘Rossby radius of deformation’, which gives the scale of some of the main
energetic eddies in the atmosphere and oceans. By Eq. (3.9), when geostrophic balance
obtains the axial and horizontal scales are roughly in the ratio 2Q/N (Prandtl’s ‘ratio of

scales’, see Prandtl 1952, also Lineykin 1974), which goes to infinity when N — 0, in
accordance with Proudman’s theorem. :

4. STEADY SOURCE-SINK FLOWS

(i) Strictly two-dimensional systems. The inertial oscillations considered in section 3
depend for their existence on the deflecting action of Coriolis forces on moving: particles,
so it is appropriate to inquire whether there could be circumstances in which rotation
merely changes the pressure field, leaving unaffected the trajectories of individual fluid
elements relative to the rotating frame. Mechanically-driven flows which, by virtue of the
boundary conditions and the supposition that the fluid is homogeneous, are two-dimen-
sional in planes perpendicular to the axis of rotation, have this property when, in addition, a
certain quantity j is equal to zero. Here j is defined as the number of irreducible sets of
closed curves that can be drawn in the region of (x, y) space of connectivity ¢ occupied by the
fluid across which the net flow of fluid does not vanish. In other words, Taylor’s theorem
(see section 2(iv), especiallv Eas. (2.11) and (2.12)) holds when tha flawr je Amivan b ealativa

i S Sgre & Same
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movement of two-dimensional boundaries and/or by sources and sinks of the ‘dipole’ type,
but not when sources and sinks of the ‘monopole’ type are present.

Figure 3. Streamlines of two-dimensional source-sink flow in a rotating annular system of inner radius
and outer radius b when, owing to the presence of a radial barrier (at ¢ = 250°),/ =0, ¢ = 1 (see text).

Examples of source-sink systems of both j & 0 and j = 0 types are illustrated by Figs.
1, 2 and 3 of Hide (1968), in each of which fluid enters and leaves the system via permeable
but rigid portions of the cylindrical side-walls at a total rate Q m®s™*. Fig. 3 of the present
paper illustrates a system of the j = 0 type in the simplest case of all, where the source-sink
distribution is independent of the azimuthal angle ¢. The velocity field is determined
virtually everywhere by considerations of continuity (see Eq. (2.1)) when viscous effects are

confined to thin boundary layers on the rigid impermeable radial barrier connecting the two
cylindrical surfaces. Thus

u = (u,uy,u,) = (q/2zr,0,0) . t 2 4.1)

where r is the radial coordinate and g times the length of the system in the z-direction is
equal to Q, and the corresponding azxmuthal component of the pressure gradient is given
by

r-10Plép = r~'(Qq/x) ; 3 s (4.2)

(see Eq. (2.12)). The last equation shows immediately why the radial barrier is an essential
feature of the system when Q # 0, for without the barrier, across which a pressure difference
2Qpq develops, it would be impossible to support the azimuthal pressure gradient.

When j # 0 (as in the cases illustrated by Fig. 2 of Hide (1968)) rotation interacts with
the basic source-sink flow to produce j gyres, a ‘cyclonic’ one around each distinct sink and
an ‘anticyclonic’ one around each distinct source. The simplest case of all (see Fig. 4)
corresponds to the system illustrated by Fig. 3 with the radial barrier removed, thus increas-
ing the connectivity ¢ from 1 to 2 and j (which in general satisfies j < ¢—1) from 0 to 1.
With no radial barrier present there can be no azimuthal pressure gradient to prevent the
sideways deflection of the flow by Coriolis forces. The resulting azimuthal motion can be
calculated exactly; thus u = (4, vy, u.) where u, = q/2zr, u, = 0 and
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Figure 4. Streamlines of two-dimensional source-sink flow in a rotating annular system of inner radius a
and outer radius b when, owing to the absence of a radial barrier (cf. Fig. 3), j = 1, ¢ = 2 (see text).

22015 S
uy, = Q{—r+bs+zias+z(b = (br 2 )+(b2—a2)rs”)} . 4.3)

if @ and b are the radii of the inner or outer cylindrical surfaces respectively and S = g/2nv
(v being the coefficient of viscosity and g reckoned positive or negative according as the inner
cylinder is the source or sink of fluid (cf. Eq. (4.1)). Fig. 5 illustrates the dependence of the
radial profile of u, on the Reynolds number |S], for several values of S ranging from — o
to co. When |S] is very small, viscosity ensures that the relative azimuthal motion is very
slow, but when |S| > 1, viscous effects are confined to a boundary layer on the sink of
thickness '

b/S or a/|S| according as g 2 0. ~ i 4.4

The azimuthal flow elsewhere is such that individual fluid elements conserve their angular
momentum, so that { = r~'d(ru,)/0r, the axial and only non-zero component of relative
vorticity &, is equal to —2Q; this can be seen from the general expression '

Ry
£=(0,0,0) = (o, 0, 29{(1-&-55) [%7%]-1}) ey

The corresponding absolute vorticity in the main body of the fluid is zero, implying — since
the area integral of the absolute vorticity can be shown to equal 2n(b* —a?)Q for all S - that
when |S|'> 1 the absolute vorticity is concentrated in the thin layer on the boundary where
the fluid leaves the system. (This is a clear case of motions expelling absolute vorticity
from the main body of the fluid and concentrating it at the rim, but by a process which can
be fully specified, in contrast to some of the examples invoked during the controversy = still
apparently unsettled (but see McEwan 1976) - started in the 1960s by certain speculations
concerning the early stages in the development of hurricanes.)

(i) End-effects due to Ekman boundary layers. Strictly two-dimensional flows are
impossible to realize in practice, owing to the presence of end-walls in z = z,and z = 2,
(where z, > z,). The ‘end-effects’ produced by such walls range from minor local modifica-
tions when the basic two-dimensional flow has no relative vorticity and the end-walls are
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Figure 5. The variation of azimuthal velocity u, with radius r for the system illustrated by Fig. 4 when

b = 4a, calculated for several values of S = ¢/27, |S | being a Reynolds number based on the source strength.

When [S| > 1 individual fluid particles tend to conserve their angular momentum as they traverse the main

body of the system, the corresponding relative vorticity { being close to —2Q. A boundary layer of thickness

b/S when S > 0 (and g/|.S| when S < 0) and in which { ~ |S|Q forms on the surface of the sink, but there is
no corresponding boundary layer on the surface of the source.

everywhere perpendicular to £ (i.e. when V,z/(r, ¢) = V,z,(r, ) = 0), to major changes in
the flow pattern throughout the whols system when the basic two-dimensional flow possesses
vorticity or the end walls are not everywhere perpendicular to Q.

Consider first the case when the end-walls are perpendicular to £, so that V2, =
V,z, = 0 and the separation distance

D = zu(r: d))—z,(r, ¢) . . . (46)

is uniform (cf. Fig. 6). Supposing that the coefficient of kinematic viscosity v, though
non-zero, is so small that the boundary layers that develop on each end-wall so as to satisfy
the no-slip boundary condition there are small in thickness & (i.e. 6 € D), we can readily
show that

5 = (v/Q*(1+0()) : : : (4.7)

where ¢ is the Rossby number (see Eq. (2.16)), implying that when the interior flow  is
quasi-geostrophic (i.e. e < 1 and E < 1, see Eq. (2.17)) the boundary-layer is highly
ageostrophic with the ‘Ekman’ structure. The components (u,, u,) of u parallel to the wall
are given by

u, = {U,(1-e"°cos o) F U,e sino}(1 + O(e)) ; (4.8)
and u, = {Uy(1—e"cos o)+ U, e~ %sina}(1+ O(e)) ; (4.9)

where (U,, U,) are the corresponding quasi-geostrophic components at the edge of the
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Figure 6. Illustrating the effect of end-walls separated by a uniform distance D on flows due to distribution
of sources and sinks for which j + O (see text), as exemplified by the simple case of an annular system (see
Figs. 4 and 5) with j = 1. (a) shows the projection of streamlines on a meridian plane and (b) shows the
corresponding radial variation of relative vorticity { in regions remote from the Ekman boundary layers of
thickness 6 = (v/Q)* on the end-walls. The lightly-dashed line corresponds to the case when the end-walls
are absent and the full line to the case when the end-walls are present. Suction due to the Ekman boundary
layers reduces the radial motion u, and the relative vorticity { to zero in the main body of the fluid and gives
rise to axial motion in boundary layers of thickness A, and A, on the side-walls.

boundary layer, where it meets the interior region, o is a ‘stretched’ coordinate equal to X3,
the distance from the boundary, divided by J, and the upper (lower) sign is taken when Q
is parallel (antiparallel) to the positive x,-direction. There is a net cross-isobar flow in the
boundary layer, and if the x;-component of the vorticity in the interior region, dU,/0x, —
dU,[dx,, is non-zero, boundary layer ‘suction’ occurs, giving rise to a value of uj, the
component of u normal to the boundary, which vanishes on the rigid boundary only and has
the generally non-zero value

Us = +36(0U,/0x, U, [0x)(1+0(6) . .  (410)
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at the edge of the boundary layer (see e.g. Batchelor 1967; Greenspan 1968 ; Prandtl 1952).

Returning to the discussion of source-sink flows, we find that U, vanishes in all cases of
such systems having j = 0 (as exemplified by Fig. 3), for in such cases the basic relative
vorticity dU,/0x,—0U,[dx, = +{ = 0 (where { = r=d(ru,)/or—r=*3u,/d¢). The end-
walls boundary layers are then passive in the sense that they merely reduce the relative low
from its non-zero value in the interior region to zero on the wall, where the no-slip boundary
condition must be satisfied. This behaviour contrasts sharply with ‘cases when J*0 (as
exemplified by Fig. 4), where { % 0 and boundary layer suction completely changes the
interior solution and gives rise to complicated three-dimensional boundary-layers on the
side-walls (ses Fig. 6). _

The modified flow in the latter case consists of five regions (see Fig. 6): the inviscid
region, in which the flow is quasi-geostrophic when ¢ < 1 and E < 1, satisfying

u = (u,uyu) =0, 0QfF2nvir, 0) (1+0(e)) : (4.11)

(where & = Q/2mv*Q*a® = 0/276Qa* and E = 6%/D?), and four highly ageostrophic
regions (ses section 2(v)) comprising two Ekman layers of thickness & on the end-walls
separated by the uniform distance D and boundary layers of thickness A, and A, on the
side-walls in r = g and r = b, supposing that A,+A, < b—a. The transfer of fluid now
takes place via these boundary layers, but it is theoretically significant that simple Ekman
theory, without recourse to considerztion of the complex structure of the side-wall boundary
layers, can be used to determine u in the inviscid interior with an error no more than O(e).
Within that region all components of relative vorticity £ now vanish (to O(e)) - in contrast
to the case when the end-walls are absent, see Fig. 5 - since Proudman’s theorem (see Eq.
(2.19)) requires that geostrophic flow of a homogeneous fiuid should satisfy du/oz = 0, the
first two components of which when combined with Eq. (4.10) give

Ou 0z = —4(|D 3 : (4.12)

which is only compatible with the third component Ou.[0z = O when { = 0.

The mathematical analysis of the side-wall boundary layers is highly complex, even in
the case when non-linear effects are negligible and the layers are consequently of the so-
called ‘Stewartson-type’ with overall thickness (D§/2)* (and therefore proportional to v¥) and
sub-structure on a scale D*$* (proportional to v}). Unfortunately, the error in the linear
theory is ~ ag/D*6* or be/ D*5%, implying that non-linear effects must be taken into account
in the treatment of the side-wall boundary layers even when linear (Ekman) theory suffices
for the end-wall boundary layers. According to an approximate analysis (Hide 1968) of an
axisymmetric system (see Fig. 6) and a supporting laboratory investigation, the thickness of
the boundary layer on the source (A, when g > 0) increases and that of the sink boundary
layer (A, when g > 0) decreases with increasing eE~* (and vice versa when g < 0), but in
such a way that the product A A, remains ~ D52 even when eE~* is quite large, with A,
tending to the value 2zv6 D/ Q (see Eq. (4.4) and Fig. 5) and A, to Q/4mv*Q¥awhen eE~% > 1.
These results have been generally confirmed and extended by further work, including a
combined numerical and laboratory investigation by Bennetts and Jackson (1974).

Because the flow is axisymmetric, it is a relatively straightforward matter to extend the
foregoing analysis to cases when the end-walls are no longer perpendicular to € provided
that in shape they remain figures of revolution about the axis of symmetry, since differences
from the case illustrated by Fig. 6 are then mainly only quantitative. Thus, when the boundin g
end-wall surfaces are concentric spheres of radii @ and b(5 > &) (see Fig. 7) and relative
flow is produced by a cylindrical source near one pole feeding a cylindrical sink near the

other pole, the transfer of fluid, again, takes place via Ekman layers, which now have
thickness

O WAL e
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Figure 7. Axisymmetric source-sink flow in a spherical shell of fluid. The left side of the schematic diagram
shows the streamlines for the case when the basic angular speed of rotation £ = 0. Fluid then moves
directly from the source in the northern hemisphere to the sink in the southern hemisphere, with individual
elements following trajectories for which ~# +2z% = constant This flow pattern should be compared with that
found in the rapidly-rotating case illustrated by arrows on Lie right side of the diagram. The transfer of
fluid now takes place via Ekman boundary layers on the inner and outer spherical boundaries. Whilst the
transfer via the boundary layer on the outer sphere decreases with decreasing latitude, that via the boundary
layer on the inner sphere increases with decreasing latitude (see Eq. (4.13)) and continuity requires that there
should be a compensating axial component to the flow in the interior region (see Eq. (4.14)). The azimuthal
flow in the interior region is in geostrophic balance and vanishes, in accordance with Proudman’s theorem
(Eq. (2.19)) and the Ekman suction formula (Eq. (4.11)), in the stippled region where r exceeds the radius of
the inner sphere.

&5 = v/(Q| cos y|)* ; : : (4.13)

where ¥ is the ‘co-latitude’, so that & increases with increasing distance from the poles.
Owing to this y-dependence of 4, at a given distance r from the axis the boundary layer on
the outer sphere is thinner than the layer on the inner sphere and therefore transports less
fluid towards the equator. In contrast to the cylindrical case illustrated by Fig. 4, continuity
demands an axial flow u, in the inviscid interior where u. is independent of the axial co-
ordinate (in keeping with the third component of Eq. (2.19)) and varies with r according to
the expression

a0 aX(1—r2la®) (1 —r?[63) " =62 (1 - r?[b})*(1-r?[a})"*
“=(’)"4n52a2{ A—r 2 +(1-r b } g

when r < 4, the azimuthal motion being related to u, by the Ekman suction formula given
by Egs. (4.10) and (4.13). A striking feature of the flow is the absence in this geostrophic
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limit of any motion in the fluid occupying the region between the imaginary cylindrical
surface r = @ and the ‘low-latitude’ part of the outer bounding sphere which extends from
r = a to the ‘equator’ atr = b. The geostrophic azimuthal flow in the regionr < 4 drops to
zero at r = 4@ but its rate of change with respect to r does not, implying that a weak ageo-
strophic detached shear layer will be present near r = 4. This layer and the boundary layers
on the cylindrical surfaces of the source and sink as well as the boundary layer at the
equator of the inner sphere, where Ekman theory breaks down (as evinced by the behaviour
of the r.h.s. of Eq. (4.13) when ¢ = =/2) are complex in structure and their theoretical
investigation poses some very difficult mathematical problems. Again, however, the flow
elsewhere can be determined by elementary theoretical considerations and unpublished
experiments carried out in my laboratory demonstrate conclusively that this flow occurs in
practice. (The study of source-sink flows is not, of course, directly relevant to dynamical
meteorology, but it is nevertheless interesting to note that the tendency for the main con-
stituent of the Martian atmosphere, carbon dioxide, to freeze out near the winter pole gives
rise to a net poleward atmospheric flow and a concomitant increase in azimuthal wind
speed; for references ses e.g. Golitsyn 1973 or my Presidential Address for 1975 (Hide
1976).)

(iif) Geostrophic contours and end-effects due to topography. We now turn to the more
complicated general case of non-axisymmetric system for which the axial distance D (ses
Eq. (4.6)) between the end-walls is non-uniform. We have seen in section 2 (see Eq. (2.23))
that in quasi-geostrophic flow of a homogeneous incompressible fluid, such as the interior
flows in the cases discussed in (ii) above, changes in relative vorticity are brought about
mainly by axial stretching, and indeed the axial vorticity in the side-wall boundary layers in
the flow illustrated by Fig. 6 is strongly influenced by axial stretching due to Ekman boun-
dary-layer suction at the end-walls. When, in addition to Ekman suction, end-wall top-

ography contributes to axial stretching, by Egs. (2.23), (2.19) and (4.12), the axial component
of the quasi-geostrophic relative vorticity, {, satisfies

&0/t +(u,.V, ) = 20[(u,.V,)D-&(]/D . . (4.15)

The relative importance of the topographic contribution to vorticity changes, as

represented by the term 2Q D™ *(u,.V,) D in Eq. (4.15), is measured by the ratio k/A, where A
is the amplitude of variations in D and

hye ~ eD+0. . : : (4.16)

Topographic end effects will not be important when & < h,, but when A > h, — and this is
always the case for strictly geostrophic motion since A, then vanishes — such effects are so

strong that within the main body of the fluid the flow is steered (to O(¢)) along geostrophic
contours, defined as curves on which

D = z,-z, = constant. . 2 : (4.17)

Another solution of the ‘steering equation’

uw,V,D=0 . A : e (4.18)

satisfied by u, isu, = 0, and indeed there are circumstances in which the effect of topography
is to produce stagnation, as in the case of the equatorial region of the spherical system
discussed in (ii) above (see Fig. 7). Quasi-geostrophic motion is clearly impossible in regions
where, owing to the geometry of the end-walls, continuous geostrophic contours cannot be
found, and within such regions the flow, if it does not vanish, either oscillates rapidly or is
characterized by strong transverse shear.

The effect of axisymmetric sloping end-walls on the source-sink flow illustrated by
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distance D between the end-walls is uniform, streamlines are purely radial (see Fig. 3). Fig. 8(a) illustrates the
case when dDjdr > 0 (see text) and Fig. 8(b) the case when dD/dr < 0. In the main body of the fluid there
can be no flow across ‘geostrophic contours’ r = constant, and owing to this major constraint on the flow,
motion is largely confined to highly ageostrophic boundary layers on the cylindrical surfaces of the source
and sink and on one side only of the radial barrier, where the transfer of fluid from the inner cylinder t0 the
outer cylinder takes place via a ‘western boundary current’ when dD|dr > 0 (see Fig. 8(a)) or an ‘eastern
boundary current’ when dD/dr < 0 (see Fig. 8(b)). The motion simply reverses direction, with no significant
change in flow pattern, when the source and sink are interchanged, so that fluid enters the system via the
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topographic stretching. Figure 8(a) illustrates the case when D increases with increasing
distance from the axis (i.e. dD/dr > 0) and D(b)— D(a) > h, (see Egs. (4.16) and (4.18)),
and Fig. 8(b) the case when dD[dr < 0 and 'D(a)— D(b) > h,. In the main body of the
fluid, there can be no flow across geostrophic contours, which are circles concentric with the
axis of rotation, and, owing to this major constraint on the flow, motion is largely confined
to highly ageostrophic boundary layers on the cylindrical surfaces on the source and sink and
on one side or the other side of the radial barrier, where the transfer of fluid from the inner
cylinder to the outer cylinder (when g > 0, the case illustrated) takes place in a ‘western
boundary current’ when dD/dr > O (see Fig. 8(a)) or an ‘eastern boundary current’ when
dD|dr < 0 (see Fig. 8(b)). The motion simply reverses direction, with no significant change
in the general flow pattern, when ¢ < 0, corresponding to the case when fluid eaters the
system via the outer cylinder rather than the inner cylinder. Within the ‘western’ or ‘eastern’
boundary current, the ‘planetary vorticity’ term 2QD'(u,.V,) D is balanced by the sum of
the non-linear advective term (u,.V,){ and the viscous term vV, *{ in the vorticity equation
(see Egs. (2.6), (2.11) and (4.15)). :

It is possible to show that in its main dynamical effects the sloping end-walls with D
increasing outwards is formally equivalent in the case of a homogeneous fluid to the lati-
tudinal variation of the Coriolis parameter f (the vertical component of 29, see Eq. (2.27))
when dealing with flow in a thin spherical shell (for references see Greenspan 1968). This is
often called the ‘beta-effect’ in dynamical meteorology and oceanography, owing to the use
of the so-called ‘beta-plane’ where local Cartesian coordinates are used (with the X-axis
towards the east and the Y-axis towards the north) and f'is taken as a linear function of Y:

f=fi+BY . : : : (4.19)

The best-known example of a western boundary current in nature is the Gulf Stream in the
Atlantic Ocean (Stommel 1965), the earliest theoretical investigations of which were greatly
aided by various laboratory studies of source-sink flows in systems akin to those illustrated
by Figs. 8(a) and (b) (for review see Veronis 1973). Inserting a rigid full meridional barrier
connecting the source to the sink in the spherical system illustrated by Fig. 7 gives riseto a
cross-equatorial western boundary current reminiscent of the East-African low-level cross-
equatorial jet-stream in the atmosphere and the Somali Current in the Indian Ocean.

(iv) Other experiments with mechanically-driven flows. Time and space do not permit the
detailed treatment of further examples of experiments on basic processes in mechanically-
driven systems, such as ‘spin-up’, which has received a great deal of attention (see Benton
and Clark 1974; Buzyna and Veronis 1971; Greenspan 1968). Central to the understanding
of these processes, as attested by the cases we have chosen to discuss in detail, is the Proud-
man theorem expressing, effectively, the tendency for slow disturbances to propagate prefer-
entially in directions parallel to the rotation axis. The system illustrated by Fig. 6 is a con-
venient one for studying the disturbance produced by a localized bump on one of the end-
walls or by a solid object placed in the interior region. The wake due to the presence of such
an obstacle to the flow takes the form of a ‘Taylor column’ trailing at an angle ~¢ radians to
the z-axis when & < 1 (see Hide er al. 1968). In the ‘viscous’ limit when & < E* (< 1) the
column is parallel to the z-axis, the flow within it is virtually stagnant, and the ‘walls’ of the
column are highly ageostrophic detached shear layers of thickness ~ (D&)* (see Greenspan
1968). Otherwise, i.e. when E* < & ( < 1) the Taylor column is of the so-called ‘inertial type’
and much more complicated in structure than in the viscous limit. ;

Recent studies of Taylor columns have included work on effects due to density stratifi-
cation. On the experimental side, the combined effects of rotation and stratification are
probably best studied by determining the flow produced by moving solid objects slowly
through a fluid which otherwise rotates uniformly, as in Taylor’s pioneering study of
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the case of rotating fluids, b
Stern 1975).

In our discussion thus far we have encountered severa] exa
shear layers on end-walls and side-walls and detached shear la
fluid. As a rule, instabilities develop on these shear layers w
number based on the thickness of the layer exceeds a critica]
investigations have played a leading role in the study of these
on Ekman layer instability has been carried out using system
trated by Fig. 6, and the stability of detached shear layers and
has been usefully investigated in systems driven by differential
whole of the upper end-wall and the other bounding surfaces (

yers in the main body of the
hen an appropriate Reynolds
value > 10, and experimental
instabilities. Important work
§ essentially of the type illus-
of western boundary currents
rotation between part or the
for references see Greenspan

R THERMALLY-DRIVEN FLCWS DUE TO AN IMPRESSED HORIZONTAL
TEMPERATURE GRADIENT

the fluid in the system were replaced by a solid of the same thermal properties. Correspond-
ing to Ty(r,?) is a hypothetical density field specified by 6,(r, 1), where 6 is related toT
through the thermal coefficient of cubical expansion —db6/dT.

By Jeffreys’ theorem (see Eq. (2.6)), hydrostatic equili
when the horizonta] gradient of 6, vanishes everywhere (an
but the equilibrium is unstable when the vertical gradi
df;/dZ < 0) and sufficiently large in magnitude to overcome dissipative effects due to
viscosity, thermal conduction, etc. The investigation of the ensuing overturning motions, as
exemplified by the well-known phenomenon of Bénard convection, has been the subject of a
considerable amount of experimental and theoretical w.
Carrigan 1974; Chandrasekhar 1961; Gilman 1975; Spiegel 1972: Turner 1973), and this

has included cases when general rotation is so rapid that Coriolis forces play a dominant
role.

brium obtains in the special case
d there is no mechanical forcing),
ent is anywhere top heavy (i.e.

In the more general case when the impressed temperature gradient is not entirely
vertical, fluid motions occur for all values of 36,/0Z for (by Jefireys’ theorem) gx V6, + 0
and hydrostatic equilibrium is consequently impossible. It is with such systems in cases
when the ensuing motions are strongly influenced by Coriolis forces due to rapid rotation
that this final section is largely concerned. These motions not only carry heat horizontally,
thereby reducing the impressed horizontal temperature gradient, but they also carry heat
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upwards, thereby increasing the upward com
downward component of the density gradient

Thermally-driven flows in r
have been studied extensively du
Mason 1975). Many of the experi
wide theoretica] interest, and on t
development of successful ideas
Lorenz 1967; Quinet 1974), at a ti

ponent of the temperature gradient and the

otating fluids subject to a horizontal temperature gradient
ring the past twenty-five years (for references see Hide and

carried out is the annular apparatus introduced by Hide in 1950 (see F

case when there are no internal heat sources (0 = 0 in the notation of Eq. (2.3)) but the

- bounding cylindrical side-walls in r = aand r = b are maintained at different temperatures
T,and T, respectively, the impressed temperature field satisfies . )

1g.9) for which, in the

T; = [T},ln(r/a)—T,ln(r/b)]/ln(b/a). 3 . (5.1)
Accurate determinations of the

principal spatial and temporal characteristics of the fields
of temperature and flow veloc

ty over a wide range of precisely specified and carefully-
controlled experimental conditions led to the discovery of several fundamentally different

free types of flow (see Table 1), only one of which is symmetrical about the axis of rotation

(see Fig. 10). The general character of the flow evidently depends largely on the values of
certain external dimensionless parameters:

© = gdAp/pQ¥(b—a)? . . : (5.2)
and :

T = 4Q, 2, i (5.3)

2

{

To Ty
T P(r,p.z)
//
g d

e ey s

bject to a horizontal temperature gradient,

drawn for the case when the upper and lower bounding surfaces are horizontal. P is a general point with

polar coordinates (r, ¢,2) in a frame of reference rotating with the apparatus. £ = (0,0, Q) is the angular
velocity of basic rotation; 8 = (0,0, —g) is the acceleration of gravity (which in magnitude is typically very
much larger than Q2r); the region occupied by the fluid isa<r<band - < z< 4d; T, and T, denote
the respective temperatures at which the inner and outer cylindrical boundaries are heid by means of tem-

perature baths.
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TABLE I. Broap CLASSIFICATION OF MODES OF FREE CONVECTION IN A

ROTATING FLUID IN AN AXISYMMETRIC
CONTAINER SUBJECT TO A HORIZONTAL TEMPERA

TURE GRADIENT

(1) AXISYMMETRIC

(2) NON-AXISYMMETRIC

(a) regular baroclinic waves
(i) steady waves
(i1) ‘vacillation’
(wave shape, wave amplitude,
wave number, wave dispersion)
(b) irregular baroclinic waves
(geostrophic turbulence)

where g is the acceleration of gravity and typically »Q

’b, d the depth of the fluid, A p the
density contrast associated with the im

pressed density difference, i.e. Ap = |p(T,)—p(T))l,
otation and v the kinematic viscosity

p is the mean density, Q the angular velocity of basic r

es, co

= 0-341, 1-19 and 5-02rads-! respectively. (Experimental
details: 2 = 3-8cm: b = 84cm; d = 15-4cm; T, = 16-3°C: T, = 25-8°C; working fluid - water; duration

3s for Figs. 10(b) and (c).) Note that the

ignificance; it is the outline of 2 wire well
above the surface of the fluid. (Taken from a review by Hide 1969.)

Axisymmetric

Regular

(steady waves and vacillation)

log 8

Irregular
(geostrophic
turbulence)
Axisymmetric

og 7 e

Figure 11. Schematic regime diagram illustrating the dependence of the mode of thermal convection in a
rotating fluid annulus subject to a horizontal temperature gradient on the two principal dimcnsjonl&s
parameters required to specify the system, namely © and 7~ (see Eqgs. (5.2) and (5.3), Table 1 and Fig. 10).
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of the fluid. The quantity /, has the dimensions of length to the fourth power and over a
fairly wide range of conditions is equal to (b—a)*/d. When 7 is less than a certain critical
value of about 2 x 10° (see Fig. 11), viscosity ensures that the motion is essentially symmetri-
cal about the axis of rotation for all values of © (cf. Fig. 10(a)), but when I exceeds this
critical value there exists a certain range of @ within which the corresponding motions are
highly non-axisymmetric and either regular (cf. Fig. 10(b)) or irregular (cf. Fig. 10(c)),
depending on the values of ® and 7. The regular flows (as exemplified by Fig. 10(b))
usually exhibit periodic time variations which take the form of ‘vacillations’ (see Hide 1953,
1958) in wave-amplitude, wave-shape, or wavenumber, or of wave dispersion (see Table 1),
but under certain conditions the amplitude of these periodic changes is so small that, apart
from a steady drift of the wave pattern relative to the apparatus, the flow is virtually steady.

In sharp contrast to this behaviour, the irregular flows, as exemplified by Fig. 10(c), exhibit
complicated aperiodic fluctuations. ’

10 y

i)

-
=

o 1
0 1 2 1 3 4 5
Q rads”

Figure 12. Illustrating the dependence of the heat transfer coefficient A (Nusselt number) on the basic
rotation rate {2 for thermal convection in a typical rotating fluid annulus subject to a horizontal temperature
gradient (see Figs. 9, 10 and 11 and Table 1). H = | corresponds to no convective heat transfer, just conduc-
tion (and radiation). The letter ‘A’ denotes axisymmetric flow, ‘R’ regular baroclinic waves and ‘I’ irregular
baroclinic waves (‘geostrophic turbulence’). Crosses on the error bars correspond to a system with plane
horizontal end-walls, circles to sloping end-walls introduced so as to suppress non-axisymmetric flow (see
Hide and Mason 1975) and triangles to a case when a rigid impermeable full radial barrier connecting the
inner and outer cylinder was inserted so as to reduce the effect of rotation on advective heat transfer, The
squares are values based on a simple theoretical model of heat transfer due to axisymmetric flow (Hide 1967)
and are evidently in good agreement with the experimental measurements.

Here is not the place to present a detailed account of extensive experimental and
theoretical work on various aspects of these flow phenomena (for reviews see e.g. Fultz et al.
1959; Hide 1969; Hide and Mason 1975), but it is of some interest to discuss certain findings
that bear on the basic theoretical ideas presented in section 2. Of particular interest is the
effect of rotation on heat transfer (see Fig. 12). In a system characterized by axial symmetry
about the rotation axis, motions are confined to meridian planes when Q = 0, with lighter
(warm) fluid rising and passing from the warm side to the cold side, and heavier (cool) fluid
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Figure 13. Tlustrating ‘sloping convection’ (see text). In case (a), Q is zero or sufficiently small for direct

axisymmetric meridional overturning to occur as a result of the impressed horizontal density gradient. At
higher rates of rotation, case (b), Coriolis forces inhibit direct meridional overturning, and the motion now
consists of non-axisymmetric baroclinic waves, or ‘sloping convection’, with motions and variations in the

velocity, pressure and density field having ¢ components, perpendicular to the plane of the diagram. Typical
individual fluid elements move in trajectories that are only slightly inclined to the horizontal at an angle
which is essentially non-zero but less than the slope of the isopycnic surfaces, so as to ensure

that on average
denser fluid sinks and lighter fluid rises.

sinking and passing from the cool side to the warm side. Under the action of gravitational
torques proportional to g x V8 (see Eq. (2.6)), fluid elements undergo an overturning motion
(ses Fig. 13(a)), the associated vorticity vector being azimuthal in direction. When, on the
other hand, Q % 0, gyroscopic torques proportional to (2Q.V)u arise and these inhibit
meridional overturning. Indesd, the inhibition is complete when Coriolis forces greatly
exceed the other inertial forces and viscous forces, as they would in the main body of a
rapidly rotating fluid (though not in viscous boundary layers or detached shear layers); the
essential torque balance is then given by the thermal wind equation (2.18), from which it
follows that u is then mainly horizontal in direction everywhere if it is horizontal on the
boundaries. Axisymmetric motions satisfying the geostrophic equations are highly inefficient
not only at converting kinetic potential energy into kinetic energy, a process that requires
overturning motions (see Eq. (2.5)), but also at advecting heat in directions perpendicular to
2, since u, vanishes when u satisfies Eq. (2.15) with dP/3¢ = 0. Horizontal advective heat
transfer by axisymmetric motions will take place largely in the end-wall Ekman layers (ses
Egs. (4.7)«4.9)) and such transfer decreases raridly with Q, roughly as Q~* (Hide 1967).
One therefore expects, and the experiments confirm, that if the flow were to remain axi-
symmetric as Q increases, the advective contribution H-1 (when expressed in suitable
dimensionless units) to the heat transfer should become vanishingly small (see Fig. 12). (Here
H is the Nusselt number, defined as the total heat transfer divided by the heat transfer by
conduction (and/or radiation) alone (see e.g. Hide 1958; Krieth 1968).)

In practice, however, the flow does not remain axisymmetric, unless very special steps
are taken (see Fig. 12), and the dependence of H on Q is rather more complicated than a
steady monotonic decrease. When, as a result of increasing Q, H has dropped by no more
than 209% or 30% (depending on the exact values of other parameters) below H(Q = 0),
regular non-axisymmetric wave-motions set in (see Fig. 10(b) and 11) and within the regular
waves regime H remains fairly independent of Q (ses Fig. 12). It is only when Q attains a
sufficiently high value for irregular non-axisymmetric flow (‘geostrophic turbulence’) to
occur (see Figs. 10(c) and 11) that H starts to drop again with increasing Q, behaviour
which would appear somewhat paradoxical to engineers (see e.g. Krieth 1968) used to
associating an enhancement of heat transfer with the onset of turbulent flow.
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The mechanisms responsible for the transitions from axisymmetric to non-axisymmetric

flow and from regular non-axisymmetric flow to irregular non-axisymmetric flow are of
considerable theoretical interest. It has been demonstrated fairly conclusively that the non-
axisymmetric flows, with their meandering jet streams, are fully-developed ‘baroclinic
" which owe their existence to an instability of the basic axisymmetric state. The
available potential energy of that state is converted into kinetic energy of the waves by a
process which has been termed ‘sloping convection’ (see Fig. 13(b)), in which typical
individual fluid elements move in trajectories that are only slightly inclined to the horizontal,
at an angle which is essentially non-zero but less than the slope of isopycnic surfaces.
Baroclinic waves, with a horizontal scale given by Eq. (3.11), and associated frontal systems
and jet streams are characteristic features of the earth’s troposphere, where they play a key
role in the planetary-scale transport of heat and momentum, and it can be expected on
general theoretical grounds that baroclinic waves will occur not only at other levels in the
atmosphere, but also in other natural systems, such as the terrestrial oceans and the fluid
regions of rapidly-rotating planets and stars, including the sun.

So far as the transition from regular baroclinic waves to irregular flow (‘geostrophic
turbulence’) is concerned, various lines of experimental evidence and theoretical reasoning
(for references see Hide and Mason 1975) point to the conclusion that irregular flow arises
when the baroclinic waves are ‘barotropically unstable’, with the kinetic energy of the main
baroclinic mode passing, through non-linear Interactions, to other scales of motion. The
most striking evidence comes from determinations of m,,,, the number of waves around the
annulus (m) at the transition from regular to irregular waves, Reducing © (see Eq. (5.2))
within the regular regime tends to increase m (equal to 3 in Fig. 10(b)) and the transition to
irregular flow occurs when the azimuthal wavelength 7(b+a)/m, has dropped to a value
n(b+a)/m,y,, close to 1-5 times the radial scale of the waves, according to the original annulus
experiments, which covered a wide range of b/a and the other parameters (Hide 1953, 1958;
see also Hide and Mason 1975). Insuchan anisotropic system where, owing to Coriolis forces,
vertical motions are very much slower than horizontal motions and viscous effects are weak,
one might expect the spirit of F Jertoft’s theorem to apply, even if not the letter (see section
2(iv) and Eq. (2.27)). By that theorem the main baroclinic wave cannot lose kinetic energy by
non-linear interactions to smaller scales of motion without simultaneously losing energy to
larger scales of motion, and when the azimuthal wavelength n(b+a)/m of the main baro-
clinic wave is comparable with the size of the apparatus, larger scales are not available and
in consequence the wave is stable (see Fig. 10(b)). Only when n(b+a)/m is small enough,
=1-5 times the radial scale according to the experiments, are the larger scales available:
non-linear interactions then produce irregular flow by continually transferring kinetic energy
from the main baroclinic wave to other scales of motion.

These results concerning the nature of the irregular regime of flow have important
implications for dynamical meteorology and oceanography. They also enable us to under-
stand the principal finding of the two or three isolated laboratory investigations of thermal
convection in rotating fluids undertaken prior to 1950. More than a century ago Vettin made
a qualitative study of the top-surface flow in a rotating tank of fluid with a lump of ice near
the centre, and thereby noticed that the axisymmetric flow patterns found at low values of
Q gave way to irregular non-axisymmetric patterns at higher values of Q. He also drew
meteorological conclusions from his laboratory work (see Fultz er al. 1959), but these were
unpalatable to his contemporaries, presumably because such an approach to meteorological
problems came too soon, at a time when the atmosphere was very incompletely observed,
theoretical meteorology was isolated from other branches of science, and the subject of
fluid dynamics had not yet been transformed to its present healthy state from being an
activity in which (to paraphrase some recent remarks by a leading expert) ‘engineers
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observed effects that could not be explained and mathematicians ex
not be observed.” Nowadays, fortunately, dynamical meteorologists and oceanographers
make good use of basic fluid dynamics, including the full implications of the concept of
geostrophy which, as we have found in our discussion of a range of experiments with rotat-
ing fluids, plays a central role in the interpretation of a wide variety of flow phenomena.
Indeed, none would now dispute that the important problems in geophysical fluid dynamics
can only be tackled seriously through a combination of observational, experimental and
mathematical investigations, rendered crucial by keeping basic theoretical notions in mind.
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LECTURE 9: SUPER-ROTATION & ANGULAR MOMENTUM I. AN ANNULUS MODEL

1. Introduction

It has long been appreciated that the tendency for a fluid approximately to
conserve axial angular momentum can place important constraints on the form and
intensity of the flow in a rotating system. This is especially true of an
axisymmetric system since the absolute angular momentum per unit mass, m,

defined in cylindrical geometry by
m = r(Qr + v) (1)

(where r is the cylindrical radius from the rotation axis, () is rotation rate

and v is azimuthal velocity) is governed (for an incompressible fluid) by
am/3t + u.vm = F/p (2)

(where @ is a source/sink term due to molecular viscosity and u is the

velocity in the meridional plane). Thus, in an inviscid fluid, m is precisely
conserved following the motion in the meridional plane. Under these conditions,
the flow is severely constrained by the distribution of m in the initial state

- the total angular momentum must remain constant. If the flow is initially at
rest in the rotating frame, m at subsequent times can never exceed (r? (where
r is the maximum radial distance from the rotation axis) - prograde motion (v
>m8§ at rer is excluded! Flows with a net local or global excess of angular

max
momentum (said to be in super-rotation with respect to the inviscid state) must

require viscous and/or non-axisymmetric effects to maintain that excess.

The above considerations are of interest in connection with the general
circulation of atmospheres, since most atmospheres are observed to possess on
average significant local and global excesses of angular momentum. To examine
ways in which such an excess can be maintained in a perfectly axisymmetric flow,
we consider in this lecture the super-rotation of viscous flows in a thermally-
driven, rotating, cylindrical annulus (the ensuing discussion is largely

summarised from papers by Read 1986a,b).



2. Effects of internal viscosity

Since an inviscid, axisymmetric system (initially at rest) cannot exhibit any
super-rotation, it is natural to consider the effects of Newtonian (molecular)
viscosity, while still preserving an axisymmetric flow. Viscosity removes the
formal conservation of m but, for a steady flow, some useful constraints can
still be derived (cf the discussion of Held & Hou 1980). With viscosity, Eq (2)

can be written as
om/3t + V.(mu) = - V.F (3)

where F is the diffusive flux of m due to viscosity which, for an isotropic

fluid, is given by
F = - vr?w
= - vr?y(m/r?) (4)

where  is the local relative angular velocity = v/r. If we consider any local
maximum in m (necessarily, though not exclusively, associated with local super-
rotation), m = m say, we may draw a closed m contour in the meridional plane
atm=m - § (wgere § may be arbitrarily small and positive, see Fig. 1).
Integratgng the steady form of (3) over the toroidal volume enclosed by the m -

o
§ contour, we obtain

JJ V.(um) dV

(m - &) f u.n ds
0

0 (by mass conservation)

- J F.n ds (5)

Thus, either F.n = O everywhere, or else F must possess both inward and outward
components in different regions of the m contour (i.e. F must act up-gradient
w.r.t ym somewhere in the flow). Since F is anti-parallel to Vw (and not to Vm -
see Eq (4)), a necessary condition for local super-rotation is that Vw.Vm take
either sign in the flow (NB it is not necessary to invoke 'negative viscosity'
phenomena - fundamentally associated with non-axisymmetric effects).

=



3. An example in the cylindrical annulus

The above ideas can be illustrated in a numerical simulation of flows in a
rotating fluid annulus, heated and cooled at the sidewall boundaries in the
conventional way. The model is an axisymmetric version of that described in
Lecture 7, except that all boundaries are stress-free (i.e. Vy.n = F.n = 0, and
the fluid cannot exchange m with the boundary via viscosity) apart from the
lower surface, which is rigid and non-slip. The fluid was initialised as
isothermal (at T = (Ta + Tb)/2) and at rest in the rotating frame, then

integrated in time until a steady state was reached.

A meridional overturning circulation is driven by the differential heating
between the two sidewalls which is largely thermally-direct (see Fig. 2),
although some smaller, indirect cells also occur owing to the effects of a
diffusive instability (when the Prandtl number >> 1). During the spin-up of the
flow, m is redistributed by the meridional circulation upwards and inwards
towards the rotation axis, and accumulates near the top of the inner cylinder,
generating a local maximum in w. Since F is related to Vw, viscous diffusion
transfers m radially outwards from the w maximum against its local gradient ym.
In the steady state, the outward diffusion of m exactly balances advection by
the meridional circulation, and the distribution of F and m is shown in Fig.
2(c). Note that fluid elements near r = b and z = d have acquired m > Qb2 in a
wedge-shaped region of the flow. Since Eq (5) is satisfied not only for regions
bounded by contours of m but also by impermeable boundaries, it also applies to
the flow in Fig. 2, with F up-gradient w.r.t Vm in some places and down-gradient
in others. Adjacent to the lower non-slip boundary, < O along the outer part
of the boundary and w > O along the inner part, so that the net torque on the
flow is zero (cf the distribution of mean zonal flow at the Earth's surface,

with easterlies in the tropics and westerlies at higher latitudes).

If we define the quantitative super-rotation with respect to the angular
momentum in an inviscid fluid at rest in the rotating frame, we obtain a measure
of the global super-rotation
S im ff yr® dr dz / [ Qr® dr dz (6)

which measures the total relative angular momentum against the absolute angular

i - 1




momentum of the initial rest state (S > O implies an excess of angular momentum

over the rest state). A similar measure of local super-rotation can be defined as
s = m/Qb2 - 1 (7)

The example illustrated in Fig. 2 has S = s = 0.35, so that the flow clearly
max
exhibits both local and global super-rotation.

4, Scale analysis of super-rotation

How do S and s depend upon the external parameters, and can any quantitative
limits be placed on the maximum values of S and s attainable? These questions
can be answered in part by a scale analysis of the governing equations, noting
that S itself is a dimensionless parameter equivalent to a Rossby number based
on the cylindrical radius

B - R o V/Or (8)
C

where r and V are typical radius and azimuthal velocity scales. The details of
the analysis are too complicated to include here, but may be found in Read

(1986a). We give a flavour of its methods and results below.

It is convenient to define a number of new dimensionless parameters in

addition to S and Prandtl number P - including the Rayleigh number

A = gaAT\3/kv (9
where L ~ (b - a) and other parameters are conventional, the Ekman number

E = v/(204%) (10)
conventional Rossby number

R = V/(20L) (11)

(o)

aspect ratios



€ = d/L; n = L/r (12a,b)

and a further parameter

A'l/2 E sl (13)

Q =
The latter is a measure of the (square of the) ratio of the thickness of the
(non-rotating) thermal boundary layer at the sidewalls to that of the Ekman
layer, and is a convenient dimensionless measure of the rotation rate with a
useful physical interpretation (see Read 1986a). Anticipating the final result,
we consider a range of intermediate rotation rates consistent with €2/P2 <K

Q < 1, for which it can be shown that W/; -z K€3/4A1/4. Scaling the

azimuthal component of the vorticity equation in the interior using

Ar:LAr*; r=rr*; z=dz*; \IJ:‘yw*; T—T=ATT*; (14)

(where starred items are dimensionless functions of order unity) we obtain

-3/4 3 3/4 -1/2 -1 1/2
A/ne/ A/P b

[¥°5 - ¢ /r"] = e [J,,L/rH] + & /A0 [3T6r,]

-R PE_ZQ2 [ov/9z ] - RR PE_ZQ2 [1/r 8v%/3z ] (15)
o * co %

where J(x,y) is the Jacobian representation of the non-linear terms, and ATh is
the horizontal temperature difference in the interior (" AT if the isotherm
slope 2 1). For Aand P >> 1, and R and R > 1, the essential balance is
between the buoyancy and centrifugag and Cgriolis terms (gradient wind balance -
if R > R, the centrifugal term dominates, resulting in a cyclostrophic
balaﬁce), gmplying that 'if ATh T AT (valid around Q = 1, see Read 1986a),

€ and N are large enough, and P is greater than the limit

P D> (ez/n)l/3 (16)

(so that diffusion of heat in the interior is not significant), the upper limit

on R is approximately
c




LA2
max(RC) < €(n/P) : (17)

The most rapidly super-rotating flows thus require large aspect ratios and
cylindrical curvature, and moderate rotation rates and Prandtl number. The

resulting flow is characterised by a gradient wind balance (with centrifugal

terms dominating over Coriolis terms in extreme cases) in the interior
vorticity equation. A further novel implication is that the Ekman layers are no
longer linear in the azimuthal momentum equation, but are characterised by a
balance between the viscous term and the non-linear inertial acceleration
(rather than the Coriolis term). The results of this analysis have been
verified using a numerical model which is described by Read (1986a), and some
typical profiles of the magnitudes of the various terms in the main equations
of motion for a simulation with € = 2, close to the maximum in R , are shown in
’ipe 3s s
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Figure 1: Schematic contour map in the meridional plane (e.g. radius-
height plane in cylindrical geometry) of absolute angular momentum in

a hypothetical axisymmetric flow. Constraints derived in the text for
such a flow, associated with a balance between advection (in a meridional
circulation - thin, continuous lines) and diffusion (fluxes illustrated
by heavy arrows labelled F), result in a need for F to act inwards in
some places and outwards in others for a region enclosed by a closed m

contour,
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Figure 2. Contour maps of the steady-state fields for a numerical simulation of the thermally-driven axisym-
metric circulation in a rotating fluid annulus with rigid, non-slip base, and stress-free side boundaries and top
surface (case B, see text): (a) temperature (contour interval, 0-5K); (b) angular velocity y = v/r (see text,
contour interval, 0-05s77; the region where y < 0 is shown shaded); (c) x (contour interval, 0-01 cm’s™'); (d)
m/Qb? (contour interval, 0-1; region where m > Qb? is shown shaded). Negative contours are dashed.(2)
m/Qb? (contour interval, 0-1), with vectors of F superimposed; Q) ~V-F (contour interval, 0-025cm? ™).
Negative contours are dashed.
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Figure 3: Profiles of the terms in a) the meridional momentum equation,

b) the azimuthal momentum equation, c) the thermodynamic equation, and

d) the azimuthal vorticity equation, calculated from a numerical simulation
of strongly super-rotating flow in a differentially heated rotating annulus
with stress-free base and sidewalls (see Read 1986a). Terms are plotted as
a function of height at mid-radius, and correspond to a) c = 2Qv, m = v3/r,
p = (3p/or)/p , b) a = u.Vv, ¢ = -2Qu, m = -uv/r, v = v(V3v - v/r?);
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DYNAMICS OF ROTATING FLUIDS SEPTEMBER 1986

LECTURE 10: SUPER-ROTATION AND ANGULAR MOMENTUM II. PLANETARY ATMOSPHERES

1. Introduction

The previous lecture considered the generation and maintenance of a super-
rotating zonal flow in an axisymmetric, thermally-driven viscous fluid. In the
present lecture, we draw on the insight provided by studies of such simple
systems in the interpretation of the circulation of the atmospheres of the Earth
and other planets of the Solar System. As remarked at the beginning of Lecture 9,
most planets are observed to exhibit super-rotation in their atmospheres to a
greater or lesser degree. To measure this super-rotation, we can define more
general (zonal average) forms of S and s, by analogy with the parameters used
in Lecture 9. Thus

w2 2re
s0 = [ [ [ puR3cos?y dR d) d¢ / M (1)
-1/2 0 a

where ) is longitude, ¢ is latitude, a is the radius of the planetary surface,

u is the zonal velocity component, and

/2
Mo = [ [ pQR*cos3¢ dR d¢ (2)
-n/2 a

S 1is again a measure of the (mean) excess relative angular momentum of the

o

fluid normalised by the absolute angular momentum of the atmosphere if it were
stationary in the frame of the underlying rotating planet. For a thin, spherical

atmosphere, it is often convenient to approximate M by
o
M = (81/3)p Qa*H (3)
o o s

where p is the density at the surface and H a mean density scale height.
0 s
The local super-rotation is defined by

s = m/(Qa?) -1 (4)



where the local angular momentum per unit mass is defined in spherical polar

coordinates thus

m = R cosp (OR cosp + u) (5)

2. Super-rotation observed in planetary atmospheres

Axial angular momentum in the Earth's atmosphere is well known to be
concentrated into the mid-latitude (sub-tropical) westerly jet streams. The
global atmosphere thus super-rotates with typical values of S = 1.5 x 10—2 (e.g.
see Hide et al. 1980), though with no local super-rotation (mgtion at the
equator is generally easterly). If we interpret S as a global Rossby number by
analogy with Lecture 9, the relatively low value gor the Earth is simply an
indication of the highly geostrophic nature of the bulk of the zonal motion in

the atmosphere.

This is certainly not the case for the two planets Venus and Titan (the
largest moon of Saturn), which rotate about their axes much more slowly than
the Earth (sidereal periods of 243 days and 16 days respectively). Despite their
very long planetary rotation periods, their atmospheres (at least around the
tops of dense cloud layers) are observed to super-rotate comparatively very
rapidly in the same sense as the rotation of the underlying planet. For Venus
(for which a large amount of quantitative data are now available from US and
Soviet spacecraft, e.g. see Schubert 1983), the atmospheric rotation period at
the cloud tops is only ~ 4 days (1/60 of the planetary period !!! - see Fig. 1)
and the global super-rotation S is inferred to be = 10. With such a large
value of S , the prevailing dyngmical balance cannot be geostrophic, but is
consistentowith a cyclostrophic balance in the zonal vorticity equation between
buoyancy torques and the centrifugal term - i.e. the 'thermal wind equation'

becomes (in pressure coordinates)
9(u2)/3(1ln p) = - R /tang 9T/3d (6)
g

where R is the gas constant (cf the case discussed in Lecture 9). The
generatgon and maintenance of such a large super-rotation is still poorly

understood in detail, and remains one of the outstanding problems in planetary

T



dynamical meteorology. For Titan, the available data are much more sparse, but
the overall circulation appears to be very similar to that of Venus (see Flasar
et al. 1981).

As discussed in Lecture 6, the major planets (Jupiter and Saturn) are very
rapidly rotating, although the measurement of super-rotation is rendered
difficult by the absence of an underlying planetary surface. For both planets
it has become conventional to measure zonal motion with respect to a frame
rotating with the planet's magnetic field ('System III') - believed to represent
the rotation of the deep interior. In such a frame, the global super-rotation of
each planet is extremely small (so far as it can be determined, since we can
only measure it at the cloud tops). The local super-rotation near the equator,
however, is significantly positive ( 10 © for Jupiter - see Fig. 2 and
Flasar 1986), associated with strong equatorial westerly jet streams. The
generation and maintenance of such strongly super-rotating jets is again poorly

understood.

The latest encounter by the Voyager 2 spacecraft with Uranus has revealed
further intriguing problems concerning the super-rotation (or not!) of a
planetary atmosphere. The rotation of Uranus has been a long-standing problem
in astronomy a) because it is very hard to measure from the Earth (Uranus
exhibits almost no visible features to observe its rotation); and b) by virtue
of its extremely large obliquity with respect to its orbit (the rotation axis
is oriented at 980 with respect to its orbital axis around the Sun) - which is
not at all well understood. The Voyager images have enabled the atmospheric
rotation to be measured at a few latitudes (about 8 in total! - see Smith et al.
1986), which suggest that the wind is westerly with respect to the magnetic
field at nearly all latitudes, but with a (possibly easterly) minimum at the
equator (i.e. little or no local or global super-rotation - see Fig. 3). It is
of interest to note that, because of its large obliquity, Uranus' solar
insolation (averaged over a Uranian year) is a maximum at its poles and a
minimum at the equator. One might expect that this would result in a vertical
transfer of m by a thermally-direct meridional circulation in the opposite
sense (i.e. downwards) to that in an atmosphere with a heated equator and
cooled poles, resulting in a net sub-rotation (i.e. a negative super-rotation)

of the upper atmosphere (see Read 1986).
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3. Angular momentum transfer in planetary atmospheres

In considering the transfer of angular momentum in an atmosphere, it is
convenient to take as a starting point the properties of the axisymmetric
(zonally-averaged) component of the circulation. As discussed above, S and
s are frequently observed to exceed 1, suggesting a need to consider pgocesses
in addition to advection by the meridional and vertical motion fields, such as
the viscous diffusion considered in Lecture 9. In a large-scale atmosphere,
however, the effects of molecular diffusion are effectively negligible compared
with other processes. It has long been accepted since the work e.g. of Jeffreys,
Rossby and Starr (see Lorenz 1967) that the most important additional processes
transferring angular momentum in a real atmosphere are the frictional
interaction with the underlying surface, and the transfer of m by non-

axisymmetric waves and eddies.

This might initially suggest that the discussion of axisymmetric viscous
systems given above was not at all relevant to a planetary atmosphere. From a
consideration of the zonal mean circulation, however, some useful similarities
with the previous discussion becomes apparent, especially when taken in the
context of wave-mean flow interaction theory (e.g. Andrews & McIntyre 1978;
Edmon et al. 1980). For a non-axisymmetric flow, the zonally-averaged angular

momentum equation becomes

om/3t + u¥*.Vm = - V.E + €;7p : (7)

where u¥* is the residual mean meridional velocity (which approximates to the
Lagrangian mean circulation under certain conditions - see e.g. Edmon et al.

1980), defined in pressure coordinates by

— i 4, G 55
u =[v-23({((v'e')/(de/dp)}/3p, W, + [a{(v'e"')/(dp/dp)}/a¢p]/(a cosp)] (8)
where y = Dp/Dt, and E is a form of the so-called Eliassen-Palm (or EP) flux

(actualEy -a cosp x the usually quoted form of E, so that a convergence of E

corresponds to an acceleration of the flow):



E = a cosp[(u'v') - {é;7ap(v'e')/(dg7dp)},

(w;u') + {9(u cos¢)/3¢/(a cosp) - 2Q sing}(v'6')/(d6e/dp)] (9)

If?;/p is neglected, it is of interest to note that (7) has the same mathematical
form as the axisymmetric angular momentum equation discussed in Lecture 9, so
that E is seen to be formally similar to the diffusive flux F in viscous,
axisymmetric models. Since u* also satisfies a continuity equation similar to
that of an axisymmetric u, the same arguments concerning the integral
constraints on F also apply to E for toroidal volumes enclosed by m contours,
u¥ streamlines or impermeable boundaries (though note that u* does not generally
satisfy the same boundary conditions as u). Thus, any local maximum in m must
also be associated with EP fluxes which are up-gradient with respect to Vm in
some places and down-gradient in others, unless other dissipative processes
(such as viscosity, gravity wave-breaking etc.) contributing to sYp are also

significant.

An example for the Earth's atmosphere is shown in Fig. 4, in which the large-
scale (quasi-geostrophic) EP fluxes are illustrated with respect to the
distribution of m. E in the tropics is largely horizontal and down-gradient,
(with respect to Vm), indicating a missing (up-gradient?) source of m in
equatorial regions, probably due to the surface friction which is not accounted
for in the EP flux as calculated. Note that there is no fundamental reason for
E to depend upon the mean zonal flow in the same way as F (i.e. upon the
angular velocity gradient), so that the discussion of viscous axisymmetric
models can only provide qualitative information in a very general, non-specific
way on how a super-rotating flow in a planetary atmosphere can be set up and
maintained - essentially by a balance between advection in the meridional
circulation and a diffusion-like transfer analogous to viscosity. It is of
interest to remark, however, that a form of diffusion which tends to remove
horizontal gradients of angular velocity (like molecular viscosity) has certain
properties in common with eddy processes which tend to mix (absolute) vorticity
- such as eddies arising from barotropic instability. Although such processes
do not appear to be representative of eddies in the Earth's atmosphere (which
is significantly baroclinic), there is some evidence for Va.ﬁa > 0 in
atmospheres of Venus and Jupiter (in its equatorial jet) in a way intriguingly

similar to the axisymmetric viscous flows discussed in Lecture 9 (see Figs 1 and




2, and Read 1986), with peaks in the mean angular velocity (indicated M)

displaced from the equator itself.

4. Angular momentum fluctuations and the length of the day

In addition to the effects of large-scale eddies in the atmosphere in
transferring m between latitudes, the atmosphere can exchange m with the
underlying planet via frictional interactions at the surface and pressure
torques (which arise from east-west surface pressure differences across
mountain ranges). In general, the distribution of mean zonal velocity across
the Earth's surface is such that the total torque exerted by the atmosphere on
the Earth (and vice versa) is close to zero - hence the loss of angular momentum
due to drag on the mid-latitude westerlies is balanced by sources of m due to
a similar drag on the surface easterlies in the tropics. This balance is never
precise, however, because of general atmospheric variability, so that the
atmosphere is continually exchanging m with the solid Earth. We have considered
some general effects on the fluid atmosphere arising from this exchange, but
it also has a measurable effect upon the total angular momentum (and hence on
the instantaneous rotation rate) of the Earth itself. This can be detected
through very careful measurements of the rotation of the Earth relative to
background stars (astrometry - a branch of astronomy), though the magnitude of
the effect on the rotation period or 'length of the day' is very small - if the
entire atmosphere were brought to rest in the frame of the solid Earth, it would

only alter the mean length of the day by a few milliseconds (ms)!

Fluctuations in the length of the day (l.0.d.) have been measured by
astronomers for many years, and have indicated variability over a wide range of
timescales (from days to decades). It was not until 1979, however, that
meteorological data of sufficient quality became available (during FGGE) to
measure accurately the total angular momentum of the atmosphere every day. A
detailed comparison between this time series and that of the l.o.d. revealed a
very good correlation over timescales of days to years (see Fig. 5, from Hide
1984). This correlation (and departures from it) have been found to be very
useful and informative on a variety of problems in meteorology and geophysics,
and the Office continues to maintain an archive of atmospheric angular momentum

data (derived from ECMWF analyses) up to the present day.
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The subject is currently a very active area of research in many centres
throughout the world, and has lead, for example, to the 'rediscovery' of
fluctuations in the global atmosphere with a period ~ 40 days (cf Madden &
Julian 1972). Variability on this timescale is readily apparent in the
atmospheric angular momentum and l.0.d. time series, and is associated with
fluctuations in both mid-latitudes and the tropics which are (at least
partially) coherent. Recent theoretical interpretations have invoked a variety
of different processes in the tropical atmosphere, including modified forms of
equatorially-trapped Kelvin waves (Chang 1977), oscillations of the Hadley
circulation associated with interactions between dynamics and moist convective
heating (Goswami & Shukla 1984), and the propagation of barotropic Rossby waves
between tropics and mid-latitudes (Simmons et al. 1983). None of these

processes, however, has so far received widespread acceptance ....?
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but plotted
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l“xcun‘ Angular momentum fluctuations of the atmosphere (a) and changes in the length of the day (5) from
1 December 1979 to 15 February 1984. There is good agreement between nn_:c»\:'ananom of the oormpondmg
axial atmospheric effective angular momentum oJ A%, 'implying that et terhn ol changa el lmgth
d'thedaycanbewooumedforvmuallyennrelymtenmofuulangulumomenmmexchangebetwccnthc
atmosphere and solid Earth, without having to invoke significant non-meteorological excitation on these short
timescales. These results effectively confirm and extend the work of Hide ¢t al. (1980) (see also BHWW), which
was based on the most comprehensive meteorological data sets ever obtained, albeit for the limited duration
of the two Special Observing Periods (4 January-5 March and 1 May-30 June) in 1979 of the FGGE. By
continuing these calculations on a routine basis with the best meteorological and length-of-day data available
it will be possible to investigate in detail the non-meteorological processes that influence the rate of rotation
of the solid Earth on longer timescales. (The length of the day is 86400+ Ats.)
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